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ABSTRACT
We present a novel approach to client-side mining of temporal API
specifications based on static analysis. Specifically, we present
an interprocedural analysis over a combined domain that abstracts
both aliasing and event sequences for individual objects. The anal-
ysis uses a new family of automata-based abstractions to represent
unbounded event sequences, designed to disambiguate distinct us-
age patterns and merge similar usage patterns. Additionally, our ap-
proach includes an algorithm that summarizes abstract traces based
on automata clusters, and effectively rules out spurious behaviors.

We show experimental results mining specifications from a num-
ber of Java clients and APIs. The results indicate that effective
static analysis for client-side mining requires fairly precise treat-
ment of aliasing and abstract event sequences. Based on the re-
sults, we conclude that static client-side specification mining shows
promise as a complement or alternative to dynamic approaches.

Categories and Subject Descriptors. D.2.4 [Program Verifica-
tion]; D.2.1 [Requirements/Specifications]
General Terms. Algorithms, Verification, Abstract Interpretation
Keywords. Specification Mining, Static Analysis, Typestate

1. INTRODUCTION
There is only one thing more painful than learning from
experience and that is not learning from experience.
– Archibald MacLeish

Specifications of program behavior play a central role in many
software engineering technologies. In order to apply such tech-
nologies to software lacking formal specifications, much research
has addressedminingspecifications directly from code [1, 2, 5, 20,
21, 22, 13, 8, 12, 15, 7].

Most such research addressesdynamic analysis, inferring speci-
fications from observed behavior of representative program runs.
Dynamic approaches enjoy the significant virtue that they learn
from behavior that definitively occurs in a run. On the flip side,
dynamic approaches can learnonly from available representative
runs; incomplete coverage remains a fundamental limitation.

The Internet provides access to a huge body of representative
clients for many APIs, through myriad public code repositories
and search engines. However, the amount of code available for
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inspection vastly exceeds the amount of code amenable to auto-
mated dynamic analysis. Dynamic analysis requires someone to
build, deploy, and set up an appropriate environment for a program
run. These tasks, difficult and time-consuming for a human, lie far
beyond the reach of today’s automated technologies.

To avoid the difficulties of running a program, a tool can grab
code, and apply static program analysis to approximate its behavior.
For this reason, static analysis may add value as a complement or
alternative to dynamic analysis for specification mining.

Static analyses for specification mining can be classified as
component-side, client-side, or both. A component-side approach
analyzes the implementation of an API, and uses error conditions
in the library (such as throwing an exception) or user annotations
to derive a specification.

In contrast, client-side approaches examine not the implementa-
tion of an API, but rather the ways client programs use that API.
Thus, client-side approaches can infer specifications that represent
how a particular set of clients uses a general API, rather than ap-
proximating safe behavior for all possible clients. In practice, this
is a key distinction, since a specification of non-failing behaviors
often drastically over-estimates the intended use cases.

This paper addresses static analysis for client-side mining, ap-
plied to API specifications for object-oriented libraries. The cen-
tral challenge is to accurately track sequences that represent typical
usage patterns of the API. In particular, the analysis must deal with
three difficult issues:

• Aliasing. Objects from the target API may flow through
complex heap-allocated data structures.

• Unbounded Sequence Length.The sequence of events for
a particular object may grow to any length; the static analysis
must rely on a sufficiently precise yet scalable finite abstrac-
tion of unbounded sequences.

• Noise. The analysis will inevitably infer some spurious us-
age patterns, due to either analysis imprecision or incorrect
client programs. A tool must discard spurious patterns in or-
der to output intuitive, intended specifications.

We present a two-phase approach consisting of (1) anabstract-
trace collectionto collect sets of possible behaviors in client pro-
grams, and (2) asummarizationphase to filter out noise and spuri-
ous patterns. Specifically, the main contributions of this paper are:

• a framework for client-side specification mining based on
flow-sensitive, context-sensitive abstract interpretation over
a combined domain abstracting both aliasing and event se-
quences,

• a novel family of abstractions to represent unbounded event
sequences,

• novel algorithms to summarize abstract traces based on au-
tomata clusters, and

• results from a prototype implementation that mines several
interesting specifications from non-trivial Java programs.



class SocketChannelClient {
void example() {

Collection<SocketChannel> channels = createChannels();
for (SocketChannel sc : channels) {

sc.connect(new InetSocketAddress("tinyurl.com/23qct8",80));
while (!sc.finishConnect()) {

// ... wait for connection ...
}
if (?) {

receive(sc);
} else {

send(sc);
}

}
closeAll(channels);

}
void closeAll(Collection<SocketChannel> chnls) {

for (SocketChannel sc : chnls) { sc.close(); }
}
Collection<SocketChannel> createChannels() {

List<SocketChannel> list = new LinkedList<SocketChannel>();
list.add(createChannel("http://tinyurl.com/23qct8", 80));
list.add(createChannel("http://tinyurl.com/23qct8", 80));
//...
return list;

}
SocketChannel createChannel(String hostName, int port) {

SocketChannel sc = SocketChannel.open();
sc.configureBlocking(false);
return sc;

}
void receive(SocketChannel x) {

File f = new File("ReceivedData");
FileOutputStream fos = new FileOutputStream(f,true);
ByteBuffer dst = ByteBuffer.allocateDirect(1024);
int numBytesRead = 0;
while (numBytesRead >= 0) {

numBytesRead = x.read(dst);
fos.write(dst.array());

}
fos.close();

}
void send(SocketChannel x) {

for (?) {
ByteBuffer buf = ByteBuffer.allocateDirect(1024);
buf.put((byte) 0xFF);
buf.flip();
int numBytesWritten = x.write(buf);

}
}

}

Figure 1: A simple program using APIs of interest.

The experimental results indicate that in order to produce rea-
sonable specifications, the static analysis must employ sufficiently
precise abstractions of aliases and event sequences. Based on ex-
perience with the prototype implementation, we discuss strengths
and weaknesses of static analysis for specification mining. We con-
clude that this approach shows promise as a path to more effective
specification mining tools.

2. OVERVIEW
Fig. 1 shows a simple Java program that usesSocketChannel

objects. Our goal is to infer the pattern ofSocketChannel API
calls the program invokes on any individual object. Fig. 2 shows
a partial specification of theSocketChannel API,1 represent-
ing a desirable analysis output. The specification indicates that the
program mustconnecta SocketChannel before using it. Con-
necting a channel entails a sequence of three operations: (1) con-
figuring the channel’s blocking mode, (2) requesting a connection,
and (3) finishing the connection process by waiting for the connec-

1Figures in the paper use abbreviated method names.
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Figure 2: Partial specification for SocketChannel .

tion to be established. Once the channel is connected, the program
can invokeread andwrite in any order, and eventually,close .

To extract this pattern from the example code, an analysis
must deal with complex heap-allocated data structures in or-
der to track the state of individual objects. Note that the
methodcreateChannels returns a collection containing an ar-
bitrary number of dynamically allocatedSocketChannel ob-
jects, which flow across procedure boundaries to other API calls. In
order to make sense of the temporal sequence of operations on any
individual channel, the analysis must employ precise alias analysis
to track the sequence of operations on individual objects.

In addition to challenges with alias analysis, the specification
inference must deal with a second difficult abstraction issue: track-
ing state related to a potentiallyunboundedsequence of events for
each object. For example, thereceive method of Fig. 1 invokes
x.read(dst) in awhile loop with unknown bounds.

2.1 Our Approach
Our approach consists of two phases: anabstract-trace col-

lection phase, which accumulates abstractions of event sequences
for abstract objects, usingabstract histories, and asummarization
phase, which consolidates the abstract histories and reduces noise.

2.1.1 Abstract-Trace Collection
We statically collect data regarding the event sequences for ob-

jects of a particular type. We use abstract interpretation [6], where
an abstract value combines pointer information with anabstract
history, a bounded representation of the sequence of events for a
tracked object in the form of an automaton.

Our trace collection analysis is governed by two general parame-
ters: (i) the heap abstraction and (ii) the history abstraction. Table 1
shows the abstract histories generated for the example program,
varying the choice of heap abstraction and history abstraction.

The table columns represent two heap abstractions presented
previously [9]; the Base abstraction, which relies on a flow-
insensitive Andersen’s pointer analysis [3], and theAPFocusab-
straction, which employs fairly precise flow-sensitive access-paths
analysis. The table rows represent variations on the history ab-
straction. The history abstraction relies on anextendoperator and a
mergeoperator. In the table, we fix the extend operator to one that
distinguishes past behavior (thePastrelation of Section 4.2.3), and
vary the choice of merge operator.

The merge operator controls thejoin used to combine histories
that arise at the same program point but in different execution paths.
TheTotal operator joinsall histories that occur in a particular ab-
stract program state. TheExterioroperator joins only histories that
share a common recent past, as will be described formally later.

In the table, specifications become less permissive (and more
precise) as one moves right and/or down. That is, the combination
Base/Past/Total is the most permissive, and APFocus/Past/Exterior
is the least permissive. The results show that the analysis requires
both a rather precise aliasing and a rather precise merge operator
in order to approach the desired result.
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Table 1: Results of mining the running example with varying heap abstractions and merge algorithms.

2.1.2 Summarization
Abstract trace collection generates a set of abstract histories that

overapproximates possible client behavior. However, some gener-
ated histories will admit spurious behavior (noise), either due to
analysis imprecision or bugs in the client corpus.

The summarization phase employs statistical approaches to con-
solidate the collected abstract histories. In contrast to most previ-
ous work, which summarizes either raw event traces [5, 2] or event
pairs [22, 20], our “raw data” (automata) already exhibit some
structure resembling a candidate specification.

Our summarization phase exploits this structure to perform ef-
fective noise elimination and consolidation. In particular, we show
a clustering algorithm to partition the abstract histories into groups
that represent related scenarios. The approach eliminates noise
from each cluster independently, allowing it to distinguish noise
from interference between independent use cases.

Returning to the running example, we note that the least permis-
sive abstract history (APFocus/Past/Exterior) contains a few edges
that look spurious, such as repeated calls toclose (state 2 self-
loop) and repeated calls toconnect (state 6 to state 3). In fact,
these transitions will occur in the example program if the same
SocketChannel appears twice in the collection; however, most
likely the programmer does not intend for this to happen, and per-
haps some invariant rules out this pathological case. When this
abstract history is summarized with others that do not exhibit this
particular pathology, the summarization algorithm will rule out the
spurious edges, resulting in the specification of Fig. 2.

We further note that the quality of the input abstract histories
limits the quality of the summarization output. It is hard to imagine
any summarization algorithm producing the desired specification
based on overly permissive input, such as the abstract history from
Base/Past/Total.

3. PRELIMINARIES
In this section, we provide some basic definitions that we will

use in the rest of the paper.

DEFINITION 3.1. Given a finite setΣ of input symbols, a finite
automatonoveralphabetΣ is a tupleA = (Σ,Q, init, δ,F), where
Q is a finite set ofstates, init ∈ Q is theinitial state, δ : Q×Σ→ 2Q

is thetransition functionandF⊆Q is the set ofaccepting states.

An automatonA is deterministicif for every q ∈ Q andσ ∈ Σ,
|δ(q, σ)| ≤ 1. δ is extended to finite words in the usual way. The
languageof A, denotedL(A), is the set of all wordsα ∈ Σ∗ such
thatδ(init, α) ∩ F 6= ∅.

For an automaton stateq ∈ Q, we defineink(q) = {α ∈ Σk |
∃q′ ∈ Q : q ∈ δ(q′, α)}. Similarly, outk(q) = {α ∈ Σk | ∃q′ ∈
Q : q′ ∈ δ(q, α)}. In particular,in0 = out0 = {ε}, whereε
denotes the empty sequence. To ensure that for everyq ∈ Q and
everyk ≥ 1, ink(q), outk(q) 6= ∅, we extendΣ by some⊥ 6∈ Σ
and view each state that has no predecessor (resp. successor) as
having an infinite ingoing (resp. outgoing) sequence⊥ω.

DEFINITION 3.2 (QUOTIENT). LetA = (Σ,Q, init, δ,F) be
an automaton, andR ⊆ Q × Q an equivalence relation onQ,
where[q] denotes the equivalence class ofq ∈ Q. Then thequotient
automatonis QuoR(A) = (Σ, {[q] | q ∈ Q}, [init], δ′, {[q] | q ∈
F}), whereδ′([q], σ) = {[q′] | ∃q′′ ∈ [q] : q′ ∈ δ(q′′, σ)}.

The quotient automaton is an automaton whose states consist of
the equivalence classes of states of the original automaton. The
outgoing transitions are then defined as the union of the outgoing
transitions of all the states in the equivalence class (this might result
in nondeterministic automata even ifA is deterministic). It is easy
to show thatL(A) ⊆ L(QuoR(A)).

In the following, the alphabetΣ consists of method calls (ob-
servable events) over the objects of the tracked type.

4. ABSTRACT TRACE COLLECTION
Our trace collection analysis produces “abstract histories”,

which summarize the event sequences of many possible concrete
executions. The analysis-propagates a sound approximation of pro-
gram state that tracks alias information and histories for each ab-
stract object.

In the following, we describe the analysis in terms of a sound
abstraction of an instrumented concrete semantics.

4.1 Concrete Instrumented Semantics
We define an instrumented concrete semantics that tracks the

concrete trace of events for each concrete object. We refer to the
concrete trace of events as theconcrete historyof the concrete ob-
ject. We start with a standard concrete semantics for an imperative



object-oriented language, defining a program state and evaluation
of an expression in a program state.

Restricting our attention to reference types, the semantic do-
mains are defined in a standard way as follows:

L\ ∈ 2objects\

v\ ∈ Val = objects\ ∪ {null}
ρ\ ∈ Env= VarId→ Val
π\ ∈ Heap= objects\ × FieldId→ Val

state\ = 〈L\, ρ\, π\〉 ∈ States = 2objects\ × Env× Heap

whereobjects\ is an unbounded set of dynamically allocated ob-
jects,VarId is a set of local variable identifiers, andFieldId is a set
of field identifiers.

A program statekeeps track of the setL\ of allocated objects, an
environmentρ\ mapping local variables to values, and a mapping
π\ from fields of allocated objects to values.

In our instrumented semantics, each concrete object is mapped
to a “concrete history” that records the sequence of events that has
occurred for that object. Technically, we define the notion of a
historywhich captures a regular language of event sequences.

DEFINITION 4.1. A history h is a finite automaton
(Σ,Q, init, δ,F), whereF 6= ∅. F is also called the set of
current states. We define thetraces represented byh, Tr(h), to be
the languageL(h).

A concrete historyh\ is a special case of a history that encodes a
single finite trace of events, that is, whereTr(h\) consists of a sin-
gle finite trace of events. In Sec. 4.2 we will use the general notion
of a history to describe a regular language of event sequences. We
refer to a history that possibly describes more than a single trace of
events as anabstract history.

EXAMPLE 4.2. Fig. 3 shows examples of concrete histories oc-
curring for a SocketChannel object of the example program
at various points of the program. Fig. 4 and Fig. 5 show exam-
ples of abstract histories describing regular languages of events.
In all figures, current states are depicted as double circles. Note
that the automaton corresponding to an abstract history may be
non-deterministic (e.g., as shown in Fig. 5).

We denote the set of all concrete histories byH\. We aug-
ment every concrete state〈L\, ρ\, π\〉 with an additional mapping
his\ : L\ ⇀ H\ that maps an allocated object of the tracked type to
its concrete history. A state of the instrumented concrete semantics
is therefore a tuple〈L\, ρ\, π\, his\〉.

Given a state〈L\, ρ\, π\, his\〉, the semantics generates a new
state〈L\′, ρ\′, π\′, his\′〉 when evaluating each statement. We as-
sume a standard interpretation for program statements updatingL\,
ρ\, andπ\. Thehis\ component changes when encountering object
allocations and observable events:

• Object Allocation: For a statementx = new T() allo-
cating an object of the tracked type, a new (fresh) object
lnew ∈ objects\ \ L\ is allocated, andhis\′(lnew) = h\

0,
whereh\

0 = (Σ, {init}, init, δ0, {init}) and δ0 is a transi-
tion function that maps every state and event to an empty set.
That is, the newly allocated object is mapped into the empty-
sequence history.

• Observable Events:For a statementx.m() whereρ\(x) is
of the tracked typeT , the objectρ\(x) is mapped to a new
concrete historyextend\(h\, m), whereh\ = his\(ρ\(x))
andextend\ : H\ × Σ → H\ is the concreteextend trans-
former that adds exactly one new state toh\, in the natural
way, to reflect the call tom().

Statement Concrete History
sc = open() //º¹¸·³´µ¶¨§¦¥¡¢£¤
sc.config //º¹¸·³´µ¶ cfg //º¹¸·³´µ¶¨§¦¥¡¢£¤
sc.connect //º¹¸·³´µ¶ cfg //º¹¸·³´µ¶ cnc //º¹¸·³´µ¶¨§¦¥¡¢£¤
sc.finCon //º¹¸·³´µ¶ cfg //º¹¸·³´µ¶ cnc //º¹¸·³´µ¶ fin //º¹¸·³´µ¶¨§¦¥¡¢£¤
. . .

sc.finCon //º¹¸·³´µ¶ cfg //º¹¸·³´µ¶ cnc //º¹¸·³´µ¶ fin// . . . fin //º¹¸·³´µ¶¨§¦¥¡¢£¤
x.read //º¹¸·³´µ¶ cfg //º¹¸·³´µ¶ cnc //º¹¸·³´µ¶ fin// . . . fin //º¹¸·³´µ¶ rd //º¹¸·³´µ¶¨§¦¥¡¢£¤
. . .

x.read //º¹¸·³´µ¶ cfg //º¹¸·³´µ¶ cnc //º¹¸·³´µ¶ fin// . . . fin //º¹¸·³´µ¶ rd // . . . rd //º¹¸·³´µ¶¨§¦¥¡¢£¤
sc.close //º¹¸·³´µ¶ cfg //º¹¸·³´µ¶ cnc //º¹¸·³´µ¶ fin// . . . fin //º¹¸·³´µ¶ rd // . . . rd //º¹¸·³´µ¶ cl //º¹¸·³´µ¶¨§¦¥¡¢£¤

Figure 3: Example of concrete histories for an object of type
SocketChannel in the example program.

Fig. 3 shows the evolution of concrete histories for an object in
the example program. Each concrete history records the sequence
of observable events (method calls) upon theSocketChannel
during a particular execution. Note that the length of a concrete
history is a priori unknown, as events may occur in loops.

4.2 Abstract Semantics
The instrumented concrete semantics uses an unbounded de-

scription of the program state, resulting from a potentially un-
bounded number of objects, each with a potentially unbounded his-
tory. In this section we describe an abstract semantics that conser-
vatively represents the instrumented semantics with various degrees
of precision and cost.

4.2.1 Abstract States
Following [9], we base the abstraction on a globalheap graph,

obtained through a flow-insensitive, partially context-sensitive
subset-based may points-to analysis [3]. This provides a partition
of theobjects\ set into abstract objects, each partition with a unique
name called aninstance key.

The heap graph representation of our motivating example con-
tains a single instance key for typeSocketChannel , represent-
ing all the objects allocated increateChannel .

An abstract program state consists of a set of tuples, called “fac-
toids.” A factoid is a tuple〈o, heap-data, h〉, where

• o is an instance key.
• heap-dataconsists of multiple components describing heap

properties ofo (as in [9]).
• h is the abstract history representing the traces observed for

o until the corresponding execution point.
An abstract state can contain multiple factoids for the same instance
keyo, representing different alias contexts and abstract histories.

The heap-datacomponent of the factoid is crucial for preci-
sion; we adopt theheap-dataabstractions of [9]. Intuitively, the
heap abstraction relies on the combination of a preliminary scal-
able (e.g. flow-insensitive) pointer analysis and selective pred-
icates indicating access-path aliasing, and information on object
uniqueness. Informally, a factoid with instance keyo, and with
heap-data= {unique = true, must = {x.f}, mustNot =
{y.g}, may = true} represents a program state in which there
exists exactly one object namedo, such thatx.f must evaluate to
point to o, y.g mustnot evaluate to point too, and theremaybe
other pointers too not represented by these access-paths . Crucially,



the tracking ofmust point-toinformation allowsstrong updates[4]
when propagating dataflow information through a statement.

Due to space constraints, we must elide further exposition of the
heap abstraction and refer the reader to [9].

While a concrete history describes a unique trace, an abstract
history typically encodes multiple traces as the language of the au-
tomaton. Different abstractions consider different history automata
(e.g. deterministic vs. non-deterministic) and different restrictions
on the current states (e.g. exactly one current state vs. multiple
current states). We denote the set of abstract histories byH. The
remainder of this section considers semantics and variations of his-
tory abstractions.

4.2.2 Abstract Semantics
An abstract semantics for the history is defined via the following:
• An abstract extend transformer,extend : H× Σ → H, and
• A merge operator

⊔
: 2H → 2H which generates a new set

of abstract histories that overapproximates the input set.
In the abstract semantics, the abstract history component for a

fresh object is initialized toh\
0 (the empty-sequence history). When

an observable event occurs, the semantics updates the relevant his-
tories using theextend operator.

As long as the domain of abstract histories is bounded, the ab-
stract analysis is guaranteed to terminate. However, in practice,
it can easily suffer from an exponential blowup due to branching
control flow. The merge operator will mitigate this blowup, ac-
celerating convergence. Specifically, at control flow join points,
all factoids that represent the same instance key and have identical
heap-data are merged. Such factoids differ only in their abstract
histories, i.e., they represent different execution paths of the same
abstract object in the same aliasing context.

Soundness.We design the abstraction to keep track of (at least)
all the traces, or concrete histories, produced by the code base. We
denote the set of all concrete histories possibly generated by a code
baseC by H\

C . Similarly, we denote the set of all abstract histo-
ries generated by the analysis ofC byHC . The analysis issound
if for every concrete historyh\ in H\

C there exists some abstract
history inHC whose set of traces includes the single concrete trace
represented byh\. I.e.,

⋃

h\∈H\
C

Tr(h\) ⊆
⋃

h∈HC

Tr(h).

Soundness is achieved by making sure that every reachable (in-
strumented) concrete stateistate\ is represented by some reachable
abstract stateistate, meaning that for every objecto\ ∈ L\ there ex-
ists a factoid〈o, heap-data, h〉 in istatethat provides a sound rep-
resentation ofo\. This is a factoid whoseheap-datacomponent
fulfills the conditions described in [9], and in additionh is a sound
representation ofhis\(o\), i.e. Tr(his\(o\)) ⊆ Tr(h). Sound-
ness of the extend transformer and of the merge operator ensure
that the analysis is sound.

DEFINITION 4.3. An abstract extend transformerextend is
sound, if wheneverTr(h\) ⊆ Tr(h) then for everyσ ∈ Σ,
Tr(extend\(h\, σ)) ⊆ Tr(extend(h, σ)).

DEFINITION 4.4. A merge operator
⊔

is sound, if for every set
of abstract historiesH ⊆ H,

⋃
h∈H Tr(h) ⊆ ⋃

h∈⊔
H Tr(h).

Precision. The analysis ispreciseif it does not introduce addi-
tional behaviors that do not appear in the code-base, i.e.

⋃

h\∈H\
C

Tr(h\) =
⋃

h∈HC

Tr(h).

Remark.In practice, instead of considering the traces represented
by all the abstract histories generated by the analysis, we consider
theprefix-closuresof the history automata at the exit-points of the
program, obtained by settingF ′ = Q (i.e., all the states are con-
sidered accepting). Since the history automata associated with the
exit-points are “maximal”, then the set of observed traces is main-
tained when we restrict ourselves to their prefix-closures.

4.2.3 History Abstractions
We present a parameterized framework for history abstractions,

based on intuition regarding the structure of API specifications.

Quotient-Based Abstractions.In practice, automata that
characterize API specifications are often simple, and further admit
simple characterizations of their states (e.g. their ingoing or outgo-
ing sequences). Exploiting this intuition, we introduce abstractions
based on quotient structures of the history automata, which provide
a general, simple, and in many cases precise, framework to reason
about abstract histories.

Given an equivalence relationR, and somemerge criterion, we
define the quotient-based abstraction ofR as follows.

• Theextend transformerappends the new eventσ to the cur-
rent states, and constructs the quotient of the result. More
formally, let h = (Σ,Q, init, δ,F). For everyqi ∈ F we
introduce a fresh state,ni 6∈ Q. Then extend(h, σ) =
QuoR(h′), whereh′ = (Σ,Q∪{ni | qi ∈ F}, init, δ′, {ni |
qi ∈ F}) with δ′(qi, σ) = δ(qi, σ)∪{ni} for everyqi ∈ F ,
andδ′(q′, σ′) = δ(q′, σ′) for everyq′ ∈ Q andσ′ ∈ Σ such
thatq′ 6∈ F or σ′ 6= σ.

• Themerge operatorfirst partitions the set of histories based
on the givenmerge criterion. Next, the merge operator con-
structs the union of the automata in each partition, and re-
turns the quotient of the result.

It can be shown that for every equivalence relationR and merge
criterion, the quotient-based abstraction w.r.t.R is sound.

To instantiate a quotient-based abstraction, we next consider op-
tions for the requisite equivalence relation and merge criteria.

Past-Future Abstractions.In many cases, API usages have
the property that certain sequences of events are always preceded
or followed by the same behaviors. For example, aconnect event
of SocketChannel is always followed by afinishConnect
event. This means that the states of the corresponding automata are
characterized by their ingoing and/or outgoing behaviors. As such,
we consider quotient abstractions w.r.t. the following parametric
equivalence relation.

DEFINITION 4.5 (PAST-FUTURE RELATION). Let q1, q2 be
history states, andk1, k2 ∈ N. We write(q1, q2) ∈ R[k1, k2]
iff ink1(q1); outk2(q1) ∩ ink1(q2); outk2(q2) 6= ∅, i.e. q1 and
q2 share both an ingoing sequence of lengthk1 and an outgoing
sequence of lengthk2.

For example, consider the abstract history depicted in Fig. 6(a).
States2 and4 (marked by arrows) are equivalent w.r.t.R[1, 0] since
in1(2) = in1(4) = {cnc } andout0(2) = out0(4) = {ε}.

We will hereafter focus attention on the two extreme cases of the
past-future abstraction, where eitherk1 or k2 is zero. Recall that



End of for  
iteration 0 1

cfg
2

cnc
3

fin

fin

rd

rd

40 1
cfg

2
cnc fin

fin

3 0 1
cfg

2
cnc

3
fin

fin

wrt

wrt

5

sc.connect(2) 0 1
cfg cnc

3
fin

fin

cnc

2 0 1
cfg cnc

3
fin

fin

4
rd

rd

cnc

2 0 1
cfg cnc

3
fin

fin

5
wrt

wrt

cnc

2

After merge

wrt

rd
1

cfg cnc
3

fin

fin

cnc

2
4

rd

5

wrt
cnc

cnc

0

No change

Figure 4: Abstract interpretation with past abstraction (Exterior merge).

sc.connect(2)

End of for 
iteration

cnc fin rd

wrtfin
0 1

cfg
2

4

fin

5

rd

wrt

3

fin

cnc
cnc fin

fin

wrt

rd

0 1
cfg

2
4

fin

fin

rd

wrt

3

6

fincnc
0 1

cfg
2 5

fin

rdcnc fin
0 1

cfg
2 3 5

rdfin

wrtcnc fin
0 1

cfg
2 4 5

wrtfin

After merge

No change

Figure 5: Abstract interpretation with future abstraction (Exterior merge).

in0(q) = out0(q) = {ε} for every stateq. As a result,R[k, 0]
collapses to a relation that considers ingoing sequences of length
k. We refer to it asRk

past, and to the abstraction as thek-past ab-
straction. Similarly,R[0, k] refers to outgoing sequences of length
k, in which case we also refer to it asRk

future. We refer to the
corresponding abstraction as thek-future abstraction. Intuitively,
analysis using thek-past abstraction will distinguish patterns based
only on their recent past behavior, and thek-future abstraction will
distinguish patterns based only on their near future behavior. These
abstractions will be effective if the recent past (near future) suffices
to identify a particular behavioral sequence.

Merge Criteria. Having defined equivalence relations, we now
consider merge criteria to define quotient-based abstractions. A
merge criterion will determine when the analysis should collapse
abstract program states, thus potentially losing precision, but ac-
celerating convergence.

We consider the following merge schemes.
• Total: all histories are merged into one.
• Exterior: the histories are partitioned into subsets in which

all the histories have compatible initial states and compatible
current states. Namely, historiesh1 andh2 are merged only
if (a) (init1, init2) ∈ R; and (b) for everyq1 ∈ F1 there
existsq2 ∈ F2 s.t. (q1, q2) ∈ R, and vice versa.

Intuitively, the total criterion forces the analysis to track exactly
one abstract history for each “context” (i.e. alias context, instance
key, and program point).

The exterior criterion provides a less aggressive alternative,
based on the intuition that the distinguishing features of a history
can be encapsulated by the features of its initial and current states.
The thinking follows that if histories states differ only on the char-
acterization of intermediate states, merging them may be an attrac-
tive option to accelerate convergence without undue precision loss.

Example.Fig. 4 presents abstract histories produced during the
analysis of the single instance key in our running example, using
the1-past abstraction with exterior merge. The first row describes
the histories observed at the end of the first iteration of thefor
loop ofexample() . These all hold abstract histories for the same
instance key at the same abstract state. Each history tracks a possi-
ble execution path of the abstract object.

Although these histories refer to the same instance key and alias
context, exterior merge does not apply since their current states
are not equivalent. The second row shows the result of applying
the extend transformer on each history after observing aconnect
event. The intermediate step, before the quotient construction, for
the automaton on the left is depicted in Fig. 6(a). There, and in
all other cases as well, the new state is equivalent to an existing
state according to the 1-past relation; a state withconnect as
its incoming event already exists in each automaton. As a result,
extend simply adds the new transitions and adds no new states.

After observing this event, the resulting three histories meet the
exterior merge criterion, and are therefore combined. The analysis
discards the original histories and proceeds with the merged one
which overapproximates them.

Fig. 5 presents the corresponding abstract histories using the1-
future abstraction with exterior merge (in fact, in this case total
merge behaves identically). Unlike the case under the past abstrac-
tion, merge applies at the end of the first loop iteration, since the
initial and current states are equivalent under the 1-future relation.
As a result, the analysis continues with the single merged history.
The second row shows the result of applying the extend transformer
on it after observing aconnect event.

Fig. 6(b) presents the intermediate step in which the merged ab-
stract history is extended byconnect , before the quotient is con-
structed. An outgoing transition labelledconnect is added from
state5 (the previous current state) to a new state, making state5
share a future with state1. Thus states1 and5 are merged.
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Nondeterminism.It is easy to verify that the quotient structure
of a deterministic automaton w.r.t.Rk

past is deterministic. This
ensures that thek-past abstraction always produces deterministic
automata, as demonstrated by Fig. 4. On the other hand, when the
future parameter is nontrivial (i.e.k2 6= 0), nondeterminism can
result during the quotient construction. For example, note that in
Figure 5, all the automata are non-deterministic.

Precision. If automata satisfy the following structural property,
then we can prove that the past-future abstraction is fully precise:

DEFINITION 4.6. An automatonA has the(k1, k2)-past-future
property if for every q1 6= q2 ∈ Q, ink1(q1); outk2(q1)
∩ ink1(q2); outk2(q2) = ∅. This implies that every sequence of
lengthk1 + k2 is linked to a unique automaton state.

PROPOSITION4.7 (PRECISIONGUARANTEE). If⋃
h\∈H\

C
Tr(h\) is accepted by some automaton that has

the (k1, k2)-past-future property, then the(k1, k2)-past-future
abstraction with exterior merge is precise.

When the precision precondition is not met, different choices of
k1, k2 in the past-future abstraction can lead to different results:

EXAMPLE 4.8. The first row of Fig. 7 presents two histories
produced while using the1-past abstraction to track an abstract
object that uses theSignature API. The history on the left uses
theverify feature of the API, while the history on the right uses
sign . The current states of these two histories, states2 and 2′,
are compatible (in1(2) = in1(2

′) = {update }), and the histo-
ries are therefore merged into the history presented in Fig. 7 on the
right. In particular, states2 and2′ are merged. As a result, the re-
lation between an invocation ofinitVerify (resp.initSign )
and a later invocation ofverify (resp.sign ) is lost.

When using the1-future abstraction, on the other hand, the cor-
responding abstract histories, depicted in the second row of Fig. 7,
are not compatible since their initial states are not compatible
(out1(0) = {initVerify }, while out1(0

′) = {initSign }),
and are therefore not merged, preventing the precision loss.

Of course, increasing the parametersk1 andk2 makes the ab-
straction more precise, but may negatively impact convergence.

5. SUMMARIZATION
The abstract trace collection produces automata that overapprox-

imate the actual behavior. However, the trace collection output may
represent spurious behavior due to at least three sources of noise:

• Analysis Imprecision: The output of the abstract interpre-
tation is an over-approximation that may include behavior
from infeasible paths.

• Bugs in Training Corpus: Programs in the training corpus
may contain a (hopefully small) number of incorrect usages.

• Unrestricted Methods: Some API methods (e.g. side-effect
free methods) may not play a role in the intended API speci-
fication, but may still appear in the collected abstract traces.

To deal with unrestricted methods, one could leverage
component-sidetechniques to analyze the API implementation,
identify side-effect-free methods, and exclude them from consid-
eration [18]. Similarly, we could apply component-side analysis to
exclude spurious patterns which lead to violations of simple safety
or liveness properties. We elide further discussion of such tech-
niques due to space constraints.

To deal with the other sources of noise, we turn to statistical tech-
niques inspired by approaches such as z-ranking [7] and the ranking
of [20]. Statistical techniques distinguish signal from noise accord-
ing to sample frequency. A crucial factor concerns what relative
weight to assign to each sample.

We observe that each static occurrence of a usage pattern repre-
sents some thought and work by a programmer, while each dynamic
occurrence typically represents an iteration of a loop counter. We
assign weights to patterns based on a conjecture that thenumber of
times an API usage pattern appears in the codeprovides a more
meaningful metric than the number of times that code executes2.

Most previous work on statistical trace analyses considered raw
traces consisting of raw event streams [5, 2] or event pairs [22, 20].
In contrast, our work summarizes samples that already represent
summarized abstract traces, represented as automata. In this sec-
tion, we present new approaches to statistical summarization that
exploit the structure already present in these automata.

Due to its statistical nature, summarization does not maintain
the soundness guarantee of the trace collection phase. Namely, it
might erroneously identify correct behaviors as spurious ones, and
remove them.

In the sequel, we assume without loss of generality, that the
observed traces are given via a setI of deterministic finite au-
tomata (if nondeterministic automata were produced, we add a
determinization step). The output of summarization consists of a
ranked set ofk ≤ |I| automata, where each of thek represents a
candidate API specification.

5.1 Union Methods

Naive Union.The naive approach outputs the union of all the
automata inI as the API specification, without any noise reduction.
This approach treats all traces uniformly, regardless of their fre-
quency. Moreover, it does not distinguish between different ways
in which the API is used.

Weighted Union.A better straightforward statistical approach
uses a weighted union of the input automata to identify and elim-
inate infrequent behaviors. Specifically, we form the union au-
tomaton for all input automata, labelling each transition with the
count of the number of input automata which contain it. Given

2An empirical evaluation of this conjecture falls outside the scope
of this paper, but would be an interesting direction for future work.
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this labelled automaton, one can apply any number of heuristics to
discard transitions with low weights. Our implementation takes a
threshold parameterf (0 ≤ f ≤ 1) and discards any transitions
whose weight is less thanf times the number of input automata.

5.2 Clustering
When a code-base contains several independent patterns of API

usage, these patterns may interfere to defeat union-based noise re-
duction. Instead, we partition the input into clusters of “similar”
automata, and eliminate noise in each cluster independently.

We use a simple clustering algorithm based on a notion of au-
tomatainclusion. AutomatonA includesautomatonB iff L(A) ⊇
L(B). The include relation induces a partial order on the set of
automata. Each “maximal” element (automaton) w.r.t. this order
represents a cluster consisting of all the automata included in it.
Our algorithm forms clusters based on inclusion, and then applies
the weighted union technique independently in each cluster.

EXAMPLE 5.1. Consider Fig. 8. Each of the automata (a) and
(b) represents a possible usage of theSignature API in some
code-base. Assume that each of them was observed numerous
times. A weighted union of them with any reasonable threshold
will return the right most automaton in Fig. 8, where the two usage
patterns are combined. A clustered union, on the other hand, will
identify that these are two different usage patterns, and will return
(a) and (b) as two clusters.

Assume further, that the code-base also produced the automaton
(c) of Fig. 8. Automaton (c) refers to the same usage pattern as (a),
but contains an additional transition. This transition is erroneous
in this particular usage pattern, although it is not erroneous in the
global view of the API. In the weighted union, this simply increases
the weight of the bold edge by1, but it is not recognized as an error.
Our clustered weighted union, on the other hand, recognizes that
(c) belongs to the cluster of (a), and as a result it identifies and
removes the erroneous transition.

Note that after transitions are removed, theincluderelation can
change as disparate clusters sometimes converge. As such, we iter-
ate the entire process, starting from the clustering, until reaching a
fixpoint. As a post-pass, an entire cluster can be removed as noise
based on further statistical analysis.

6. EXPERIMENTAL RESULTS
We have implemented a prototype of our analysis based on the

WALA analysis framework [19] and the typestate analysis frame-
work of [9]. Our analysis builds on a general Reps-Horwitz-Sagiv
(RHS) IFDS tabulation solver implementation [17]. We extended
the RHS solver to support dynamic changes and merges in the set
of dataflow facts. The pointer analysis adds one-level of call-string
context to calls to various library factory methods,arraycopy ,
andclone statements, which tend to badly pollute pointer flow

Num Benchmark Classes Methods Bytecodes Contexts Clients
1 aamfetch 635 2544 246284 3316 2
2 bobalice 259 1318 71048 1917 2
3 crypty 450 2138 127130 2794 1
4 flickrapi 123 423 26607 527 2
5 ganymed 121 649 49232 919 4
6 j2ns 944 4817 399402 6570 5
7 javacup 373 2000 122592 2981 2
8 javasign 111 473 45670 740 11
9 jbidwatcher 64 525 18717 269 9
10 jfreechart 654 2644 250718 3457 18
11 jlex 89 317 25261 382 2
12 jpat-p 374 2043 141649 5570 1
13 JPDStore 109 359 23040 418 2
14 js-chap13 661 2795 259273 3770 6
15 privatray 175 665 56543 876 1
16 tinysql 701 3019 277881 3980 2
17 tvla 643 2572 249243 3355 3

Table 2: Benchmarks.

precision if handled without context-sensitivity. The system uses a
substantial library of models of native code behavior for the stan-
dard libraries.

6.1 Benchmarks
Table 2 lists the benchmarks used in this study. Each of the

benchmarksbobalice , js-chap13 , andj2ns , is a set of ex-
amples taken from a book on Java security [16].flickrapi is an
open source program providing a wrapper over flickr APIs, as well
as some utilities using it.ganymed is a library implementing the
SSH-2 protocol in pure Java; the library comes with examples and
utility programs that use it.javacup andjlex are a parser gen-
erator and lexical analyzer, respectively, for Java.jbidwatcher
is an online auction tool.jfreechart is a Java chart library.
tinysql is a lightweight Java SQL engine.tvla is a static anal-
ysis framework.

The table reports size characteristics restricted to methods dis-
covered by on-the-fly call-graph construction. The call graph in-
cludes methods from both the application and the libraries; for
many programs the size of the program analyzed is dominated
by the standard libraries. The table also reports the number of
(method) contexts in the call graph (the context-sensitivity policy
models some methods with multiple contexts). The last column
shows the number of client programs for each benchmark.

Using these clients, we applied our prototype to mine specifi-
cations for a number of APIs, as described in more detail in the
next section. Our implementation employs standard automata min-
imization, and our results always refer to minimized automata.

Our most precise solvers (APFocus/Past/Exterior and APFocus/-
Future/Exterior) run in less than 30 minutes per benchmark. Our
less precise solvers run in about half the time. This performance
seems reasonable for non-interactive mining of a code base.

6.2 Results
Our evaluation focuses first on three dimensions for abstract

trace collection:
• The heap abstraction (Sec. 4.2.1): Base vs. APFocus
• The history abstraction (Sec. 4.2.3): Past vs. Future
• The merge criteria (Sec. 4.2.3): Total vs. Exterior merge

Table 3 characterizes the specifications generated by our anal-
ysis, varying the abstractions along these three dimensions. Each
row summarizes the result for a specific API across a number of
benchmarks.

Some APIs appear in several separate benchmarks, while oth-
ers appear in several programs contained within the same bench-
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Auth 2 3 1.50 2 3 1.5 2 3 1.5 2 2 1.00 2 2 1.00 2 2 1.00
Channel 2 6 3.00 3 6 2.00 3 6 2.00 3 3 1.00 3 3 1.00 3 3 1.00
ChannelMgr 2 11 5.50 5 18 3.60 6 19 3.17 4 7 1.75 5 9 1.80 5 9 1.80
Cipher 1 5 5.00 4 14 3.50 6 12 2.00 7 10 1.43 7 10 1.43 7 10 1.43
Connection 3 12 4.00 4 12 3.00 4 12 3.00 5 7 1.40 5 7 1.40 5 7 1.40
KeyAgreement 2 5 2.50 4 6 1.50 4 6 1.5 4 3 0.75 4 3 0.75 4 3 0.75
LineAndShape 3 12 4.00 6 15 2.50 6 15 2.50 6 8 1.33 6 8 1.33 6 8 1.33
MsgDigest 1 2 2.00 2 2 1.00 2 2 1.00 2 2 1.00 2 2 1.00 2 2 1.00
Photo 1 12 12.00 1 12 12.00 1 8 8.00 8 8 1.00 8 8 1.00 8 8 1.00
PrintWriter 1 3 3.00 2 3 1.50 2 3 1.50 6 11 1.83 3 5 1.67 3 5 1.67
Session 2 7 3.50 5 10 2.00 5 10 2.00 5 4 0.80 5 4 0.80 5 4 0.80
Signature 2 8 4.00 5 12 2.40 5 12 2.40 4 6 1.50 4 6 1.50 4 6 1.50
TransportMgr 9 24 2.67 2 19 9.50 8 27 3.38 9 26 2.89 9 24 2.67 9 24 2.67
URLConnection 2 9 4.50 4 10 2.5 3 6 2 4 7 1.75 NA NA NA NA

Average 4.08 3.46 2.57 1.39 1.33 1.33
Std dev 2.54 3.22 1.71 0.56 0.52 0.52

Table 3: Characteristics of our mined specifications with varying data collectors. For every mined specification DFA, we show the
number of states, edges, and the density of the DFA.

mark. TheAuth and Photo APIs are used in benchmark 4.
Channel , ChannelManager , Connection , Session , and
TransportManager are used in benchmark 5.Cipher is
used in benchmarks 1, 3, 14, and 15.KeyAgreement is used
in benchmark 2.LineAndShapeRenderer is used in bench-
mark 10.MessageDigest is used in benchmarks 1, 13, and 15.
PrintWriter is used in benchmarks 7 and 11.Signature is
used in 6 and 8.URLConnection is used in benchmark 9.

Each column of the table corresponds to a combination of a heap
abstraction, history abstraction, and merge criterion. When using
Total merge, we only show results for Past history abstraction; re-
sults for Future would be similar under this aggressive merge crite-
rion. All results in the table reflect the Naive Union summarization
(Sec. 5.1), which preserves all information collected by the trace
collectors. This allows to compare the quality of different abstract
trace collectors without interference from summarization effects.

The table reports, for each mined specification, the number of
states and transitions, and the average degree (number of outgo-
ing edges) of states in the specification. Intuitively, the degree of
a node represents the number of possible legal operations from a
given state. Since all specifications in the table overapproximate
client behavior, a smaller degree represents a better specification
since it admits fewer spurious behaviors. Note that the different
overapproximations may be incomparable in terms of the languages
they accept; that is, we cannot, in general, rank the mined specifica-
tions based on a simulation ordering. Note also that average degree
is a relative metric; its absolute value depends on the number of
observable events in the specification.

The results show across the board that precise alias analysis is
significant; the mined specifications appear significantly more per-
missive under Base aliasing than under APFocus. Exterior merge
improves over total merge frequently when using Base aliasing, and
occasionally under APFocus aliasing. When using the most pre-
cise APFocus aliasing and exterior merge, the distinction between
past and future abstractions vanishes in these experiments, although
they behave significantly differently under Base aliasing.

For some specifications, we were able to track the usage pattern
manually by inspecting the client code. For others, the complex-
ity of the client code (or even lack of Java source code) prevented
us from understanding the client API usage based on inspection.

1

[update]

2

[verify]

3

[sign][update]
0

[initVerify]

[initSign]

Figure 9: Mined Specification for java.security.Signature, ob-
tained with APFocus/Past/Exterior.

Based on manual inspection, we were able to verify that for 5 out
of the 14 APIs, the most precise analysis generated the ideal spec-
ification, even with the naive union summarization. These APIs
appear in bold in the table.

We additionally collected specifications with weighted summa-
rization for each benchmark. We do not report densities obtained by
weighted summarization, as the specification density will depend
directly on the threshold parameter provided as input. We note
based on inspection that a user-provided threshold of 1/2 for the
weighted union algorithm yields improved specifications for sev-
eral APIs. In practice, we expect a user would provide feedback to
iteratively tune the threshold as desired.

We also ran the cluster-based summarization for all specifica-
tions. For several APIs, clustering correctly identified a number of
independent usage patterns of the API in our code base. In partic-
ular, the specification obtained forCipher using the naive union
collector was polluted by calls to irrelevant methods. Using the
combination of clustering and weighted algorithms, we obtained
the “ideal” specification expected by a human.

Fig. 9 shows the output of our tool for theSignature API.
This API was mined using APFocus/Past/Exterior collector, and
summarized using the naive union summarization. Note that the
specification correctly disambiguates two use cases,verify and
sign. An approach based on event pairs (e.g. [20, 22]) could not
distinguish these two cases.

Fig. 10 shows the output of our tool for theganymed Session
API under two collector settings, and summarized using the naive
union summarization. This figure shows a typical qualitative dif-
ference between Base aliasing and APFocus.



A small gallery of mined specifications appears in an informal
online supplement to this paper [10].

6.3 Discussion
Our experiments indicate that having both a precise-enough heap

abstraction and a precise-enough history abstraction are required to
be able to mine a reasonable specification.

Without such abstractions, the collected abstract histories might
deteriorate to a point in which no summarization algorithm will re-
cover the lost information. For example, the specification mined for
thePhoto API using the Base heap abstraction has a single state.
This means that the specification does not contain any temporal in-
formation on the ordering of events. (Similarly forPrintWriter
under Base/Past/Total.)

6.3.1 Soundness
All of the results in Table 3 were obtained when our analysis

was run to completion, and are therefore guaranteed to be an over-
approximation of the behavior present in the analyzed code base.
In contrast, it is also possible to employ our analysis with a pre-
determined timeout (or with e.g., a small limited heap size). In
such cases, the specification obtained using the analysis will not
over-approximate code base behavior, but may still help understand
some behaviors. For example, when running on TVLA, we mined
a partial but interesting description of the waytvla.Engine is
used in the code base.

6.3.2 Limitations
Our prototype shows encouraging results, but due to several lim-

itations, does not yet suffice for deployment in an industrial tool.
Our implementation currently considers all methods of an API

as equally interesting. In general, this pollutes specifications with
calls to pure methods that do not change the state of the component.
When library code is available, one might analyze the library to
identify pure methods and treat them specially in both abstract trace
collection and summarization. In the absence of library code, we
envision a feedback loop involving user input, specifying methods
that should be ignored.

In some cases, the specifications mined by our approach are
too detailed, and track distinctions that hold no interest to the end
user. For example, the specification we mine forPrintWriter
records some artificial temporal ordering betweenprint and
println . We’d expect these problems to resolve themselves with
a larger input corpus; if not, a practical tool would probably resort
to user feedback to refine results.

Our current implementation does not scale to code bases larger
than roughly a few tens of thousands of lines in reasonable time
and space (depending on properties of the dataflow solution). The
scaling problem is fundamental to all whole program analyses, and
does not stem primarily from the particular history abstractions in-
troduced in this paper. In the future, we plan to explore how this
technique could be turned into a modular one in the spirit of [23],
which we believe is a crucial step for a practical implementation.

Our current prototype restricts itself to specifications involving
a single object; however, many interesting specifications involve
multiple types and objects. The ideas presented in this paper can
apply to components that involve multiple objects, but the scalabil-
ity and precision questions remain open.

Despite these limitations, we are encouraged by the results ob-
tained with our current implementation, which show the strength
of our heap and history abstractions, as well as our summarization
algorithms. We also expect these abstractions to be useful in the
context of other analyses that track temporal sequences.

7. RELATED WORK

Dynamic Analysis.When it is feasible to run a program with
adequate coverage, dynamic analysis represents the most attractive
option for specification mining, since dynamic analysis does not
suffer from the difficulties inherent to abstraction.

Cook and Wolf [5] consider the general problem of extracting
an FSM model from an event trace, and reduce the problem to the
well-knowngrammar inference[11] problem. Cook and Wolf dis-
cuss algorithmic, statistical, and hybrid approaches, and present
an excellent overview of the approaches and fundamental chal-
lenges. This work considers mining automata from uninterpreted
event traces, attaching no semantic meaning to events.

Ammons et al. [2] infer temporal and data dependence specifica-
tions based on dynamic trace data. This work applies sophisticated
probabalistic learning techniques to boil traces down to collections
of finite automata which characterize the behavior.

Whaley et al. [21] present a two-phased approach to mining
temporal API interfaces, combining a static component-side safety
check with a dynamic client-side sequence mining. This work
presents several insights on how to refine results, based on side-
effect free methods, and partitioning methods based on how they
access fields. We plan to incorporate these insights into a future
version of our analysis.

The Perracotta tool [22] addressed challenges in scaling dynamic
mining of temporal properties to large code bases. This tool mines
traces for two-event patterns with an efficient algorithm, and relies
on heuristics to help identify interesting patterns.

Livshits and Zimmerman [13] mine a software repository revi-
sion history to find small sets of methods whose usage may be cor-
related. This analysis is simple and scalable; in contrast to ours, it
does not consider temporal ordering nor aliasing. In a second (dy-
namic) phase, the system checks whether candidate temporal pat-
terns actually appear in representative program traces. Our analysis
technology could perhaps be employed in a similar architecture to
provide a more effective first phase of mining.

A number of projects mine specifications in the form ofdynamic
invariant detection. Daikon [8] instruments a running program and
infers invariants based on values of variables in representative pro-
gram traces, typically discovering method preconditions, postcon-
ditions, and loop invariants. DIDUCE [12] combines invariant de-
tection and checking in a single tool, aimed to help diagnose fail-
ures. As a program runs, DIDUCE maintains a set of hypothesized
invariants, and reports violations of these invariants as they occur.

Component-side Static Analysis.In component-side static
analysis, a tool analyzes a component’s implementation, and infers
a specification that ensures the component does not fail in some
predetermined way, such as by raising an exception. In contrast,
client-side mining produces a specification that represents the us-
age scenarios in a given code-base. The two approaches are com-
plementary, as demonstrated in [21].

Recent years have seen a number of sophisticated component-
side static analyses. Alur et al. [1] use Angluin’s algorithm together
with a model-checking procedure to learn a permissive interface of
a given component. Gowri et al. [15] use static mining to learn
a permissive first-order specification involving objects, their rela-
tionships, and their internal states.

Client-side Static Analysis.A few papers have applied static
analysis to client-side specification mining.

Engler et al. [7] use various static analyses to identify common
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Figure 10: Session API with Past/Exterior merge and (a) Base aliasing, (b) APFocus aliasing.

program behaviors, and consider deviations from these behaviors
as bugs. Their approach automatically establishes certain invari-
ants as likelybeliefs, and the tool searches for bugs by finding code
sequences that violate these invariants. The tool searches for invari-
ants based on a set of standard templates, and filters potential speci-
fications with a statistical measure (z-ranking). Their approach has
been highly effective in finding bugs in system code.

Weimer and Necula [20] use a simple, lightweight static analysis
to infer simple specifications from a given codebase. Their insight
is to use exceptional program paths as negative examples for correct
API usage. We believe that our approach could also benefit from
using exceptional paths as negative examples. Weimer and Necula
learn specifications that consist of pairs of events〈a, b〉, wherea
andb are method calls, and do not consider larger automata. They
rely on type-based alias analysis, and so their techniques should be
much less precise than ours. On the other hand, their paper demon-
strates that even simple techniques can be surprisingly effective in
finding bugs.

Mandelin et al. [14] use static analysis to infer a sequence of
code (jungloid) that shows the programmer how to obtain a desired
target type from a given source type (ajungloid query). This code-
sequence is only checked for type-safety and does not address the
finer notion of typestate.

8. CONCLUSION
To our knowledge, this paper presents the first study attempting

client-side temporal API mining with static analysis beyond triv-
ial alias analysis and history abstractions. Static analysis improves
coverage over dynamic analysis both by exploring all paths for a
single program, and by expanding the corpus of code amenable to
automated analysis. We plan to conduct further research into mod-
ular analysis techniques and improved summarization heuristics, to
move closer to practical application of this technology.
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