
Beyond Stack Inspection:
A Unified Access-Control and Information-Flow Security Model

Marco Pistoia
IBM T. J. Watson Research Ctr.

Hawthorne, New York, USA
pistoia@us.ibm.com

Anindya Banerjee∗

Kansas State University
Manhattan, Kansas, USA

ab@cis.ksu.edu

David A. Naumann†

Stevens Institute of Technology
Hoboken, New Jersey, USA
naumann@cs.stevens.edu

Abstract

Modern component-based systems, such as Java and
Microsoft .NET Common Language Runtime (CLR), have
adopted Stack-Based Access Control (SBAC). Its purpose is
to use stack inspection to verify that all the code respon-
sible for a security-sensitive action is sufficiently autho-
rized to perform that action. Previous literature has shown
that the security model enforced by SBAC is flawed in that
stack inspection may allow unauthorized code no longer
on the stack to influence the execution of security-sensitive
code. A different approach, History-Based Access Control
(HBAC), is safe but may prevent authorized code from exe-
cuting a security-sensitive operation if less trusted code was
previously executed. In this paper, we formally introduce
Information-Based Access Control (IBAC), a novel security
model that verifies that all and only the code responsible
for a security-sensitive operation is sufficiently authorized.
Given an access-control policy α, we present a mechanism
to extract from it an implicit integrity policy ι, and we prove
that IBAC enforces ι. Furthermore, we discuss large-scale
application code scenarios to which IBAC can be success-
fully applied.

1 Introduction

Modern component-based systems allow code from dif-
ferent sources and with different levels of trust to be exe-
cuted at the same time. From an integrity point of view,
it is important to verify that, any time a security-sensitive
action guarded by a permission q is attempted, all the
code responsible for that action has been granted q (or
a permission stronger than q). Among the solutions that
have been adopted to enforce this principle are Stack-Based

∗Supported by National Science Foundation (NSF) grants CCR-
0296182, ITR-0326577, and CNS-0627748.
†Supported by NSF grants CCF-0429894 and CNS-0627338.

Access Control (SBAC) and History-Based Access Con-
trol (HBAC). This section shows the limitations of SBAC
and HBAC, and introduces a new security model, called
Information-Based Access Control (IBAC), which signifi-
cantly improves upon SBAC and HBAC. The programs pre-
sented in this section are not contrived examples, but repre-
sent problems encountered in real production-level Eclipse
code [14] in the process of adopting Java’s SBAC, as will
be discussed in Section 4.2.

1.1 Stack-Based Access Control Systems

When access to a restricted resource is attempted, SBAC
systems, such as Java and Microsoft .NET Common Lan-
guage Runtime (CLR), have a primitive function walk the
execution stack and verify that all the callers currently on
that stack have been granted the permission q guarding
access to that resource [20]. This primitive function is
called checkPermission in Java and Demand in CLR;
in this paper, we call it test. The purpose of the SBAC
stack traversal is to prevent Confused Deputy attacks, in
which unauthorized code indirectly causes the execution of
security-sensitive functions by calling (or being called by)
authorized code [24].

Unfortunately, SBAC systems may inadvertently allow
unauthorized code to influence the execution of security-
sensitive code—an integrity violation. This is illus-
trated in Figure 1, where a Java program and its corre-
sponding access-control policy are shown. The security-
sensitive operation performed by the program in Fig-
ure 1 is the construction of a FileOutputStream
object. The FileOutputStream.<init>(File,
boolean) constructor triggers a stack walk by calling
checkPermission on the active SecurityManager
with a FilePermission parameter guarding the
passwords.txt file against write access, as shown in
Figure 2.1 The purpose of the stack walk is to verify that all

1Only the fragment of the FileOutputStream code relevant to the

1



public class A {
public static void main(String[] args) throws Exception {
B b = new B();
String fileName = b.m1();
FileOutputStream f = new FileOutputStream(fileName);

}
} public class B {
public String m1() {
return "passwords.txt";

}
}

Component Permission Set
A R1 = {FilePermission "<<ALL FILES>>", "write"}
B R2 = ∅
System R3 = {AllPermission}

Figure 1. Classes A and B, with the Corresponding Access-control Policy

public class FileOutputStream {
private boolean append;
public FileOutputStream(String name) throws FileNotFoundException {
File file;
if (name != null)
file = new File(name);

this(file, false);
}
public FileOutputStream(File file, boolean append) throws FileNotFoundException {
String name = (file != null ? file.getPath() : null);
SecurityManager security = System.getSecurityManager();
if (security != null)
security.checkPermission(new FilePermission(name, "write"));

this.append = append;
if (append)
openAppend(name);

else
open(name);

}
private native void open(String name) throws FileNotFoundException;
private native void openAppend(String name) throws FileNotFoundException;

}

Figure 2. Fragment of System Class FileOutputStream

the callers currently on the stack have been granted at least
the required FilePermission "passwords.txt",
"write".

Since A is not responsible for setting the file name,
the access-control policy has to conservatively grant
it a broad FilePermission "<<ALL FILES>>",
"write" for the program to execute without run-time au-
thorization failures. Furthermore, the access-control policy
grants AllPermission to all the system classes, such as
FileOutputStream and SecurityManager.

When the test is performed, the callers on the stack,
in reverse order, are security.checkPermission,
FileOutputStream.<init>(File, boolean),

examples of Section 1.1 and 1.2 is shown in Figure 2. Moreover, the
FileOutputStream code has been slightly simplified for expository
purposes.

FileOutputStream.<init>(String), and
A.main. The test succeeds because these callers
have all been granted permissions at least as strong as
FilePermission "passwords.txt", "write".
The problem is that B influences the file-access operation,
since the file name is defined by B, but B’s right to perform
that operation is never checked because b.m1 is not on the
stack when the stack walk is performed, and the file access
succeeds despite B’s having been granted no permissions.

In cases in which trusted code needs to perform a
security-sensitive operation—such as reading from a con-
figuration file or writing to a log file—not explicitly re-
quested by its (possibly untrusted) callers, SBAC sys-
tems allow marking a block of code as privilege assert-
ing. When test encounters privilege-asserting code on the
stack, it stops stack inspection and does not proceed fur-

2



public class C {
public String logFileName = "C:\\log.txt";
public void m2() throws Exception {
FileOutputStream f = (FileOutputStream)

AccessController.doPrivileged(new PrivilegedExceptionAction() {
public Object run() throws Exception {
return new FileOutputStream(logFileName);

}
});
PrintStream ps = new PrintStream(f);
ps.print("Log file started.");

}
}

Component Permission Set
C R′1 = {FilePermission "<<ALL FILES>>", "write"}
Client R′2 = ∅
System R′3 = {AllPermission}

Figure 3. Class C with the Corresponding Access-control Policy

ther, thereby temporarily granting the asserted permission
to the callers of the privilege-asserting code, recursively.
The function used to mark code as privilege-asserting is
called doPrivileged in Java and Assert in CLR; in
this paper we call it grant. Privilege-asserting code is par-
ticularly vulnerable to this type of integrity violations be-
cause attacks can be mounted even by code on the current
stack of execution [33].

Consider for example the trusted library method m2 in
Figure 3. Here, any untrusted client can instantiate an ob-
ject c of type C, set the value of c.logFileName to an
operating system file or a password file, and cause the con-
tents of that file to be overwritten by calling c.m2. The
untrusted client code will be on the stack when f is created,
but the presence of doPrivileged will prevent the stack
inspection from reaching that client code, which will suc-
ceed in altering the contents of any file of the file system.

1.2 History-Based Access Control Systems

HBAC [18, 1] was proposed to alleviate the limitations
of SBAC. In HBAC systems, when a security-sensitive re-
source is accessed, all the code previously executed (and
not just the code currently on the stack) must be sufficiently
authorized to access that resource, regardless of the fact that
some of that code may not be responsible for the resource
access.

As an example, the HBAC test triggered by the
FileOutputStream.<init>(File, boolean)
constructor detects the presence of b.m1 in the execution
history of the program in Figure 1, and since b.m1
is not sufficiently authorized, the program fails with a
SecurityException, which is appropriate because
b.m1 influences the values used in the security-sensitive
operations initiated by A.main, and B does not have the

necessary permission. However, HBAC rejects also the
program in Figure 4 because the executions of unautho-
rized methods G.<init> and g.m3 are in the history,
even though that code does not influence the file-access
operation initiated by F.main.

The execution of the FileOutputStream construc-
tor in F.main does not depend on the execution of g.m3.
Therefore, the order of these two calls in F.main can be
safely reversed. In this case, the program will succeed under
HBAC. This inconsistent behavior may be a source of con-
fusion for end users, and can render an application unstable;
an authorization failure may remain undiscovered until run
time if program components are not tested in the particular
order that causes that failure.

The grant primitive can be used also in HBAC to pre-
vent previously-executed untrusted code from reducing the
permissions dynamically granted to a trusted library per-
forming a security-sensitive action. However, previously-
executed code, though shielded from the permission re-
quirement by the grant call, can still cause an integrity vi-
olation by influencing the execution of that action through
a tainted variable, such as logFileName in Figure 3.

1.3 Contributions

In this paper, we introduce IBAC, a new access-control
model that, for any security-sensitive operation, verifies that
all the code responsible for that operation is sufficiently au-
thorized. IBAC does not limit an authorization check to
the current execution stack, since code responsible for a
security-sensitive operation may no longer be on that stack.
Therefore, IBAC is more restrictive and more precise than
SBAC. On the other hand, when a security-sensitive oper-
ation is attempted, IBAC does not restrict the permissions
of the program based on the permissions granted to all the

3



public class F {
public static void main(String[] args) throws Exception {
G g = new G();
g.m3();
FileOutputStream f = new FileOutputStream("passwords.txt");

}
}
public class G {
public void m3() {
System.out.println("The program has started");

}
}

Component Permission Set
F R′′1 = {FilePermission "<<ALL FILES>>", "write"}
G R′′2 = ∅
System R′′3 = {AllPermission}

Figure 4. Classes F and G, with the Corresponding Access-control Policy

code that has ever executed (as in HBAC), but only based on
the permissions granted to the code that has effectively in-
fluenced the execution of that security-sensitive operation.
Therefore, IBAC is less restrictive and more precise than
HBAC.

IBAC is based on the concept that every access-control
policy α implicitly defines an information-flow policy ι.
Specifically, α assigns sets of permissions to a program’s
components, and identifies which permissions are neces-
sary to execute the program. IBAC uses the permission
sets granted by α as the labels for ι. Furthermore, IBAC
transforms the existing calls to the access-control test
primitive, which are already embedded into the program,
into information-flow check points. Subsequently, for any
security-sensitive operation requiring permission q , ι im-
poses the integrity property that no code component with-
out permission q be allowed to influence the execution of
that security-sensitive operation. To achieve this result,
IBAC attaches dynamic labels on values and on the pro-
gram counter, and augments ordinary stack inspection with
tracking of information flows to security-sensitive opera-
tions. More specifically, a call to the test primitive checks
all the callers on the current stack of execution up to the first
grant call, just like in ordinary stack inspection. However,
in addition to that, an IBAC test verifies the labels on all
the values read in the security-sensitive operation guarded
by the test call. (One way to carry out this reinterpretation
is to retain the standard semantics of test and to insert ad-
ditional checks for the values read, using a new operation
for that purpose. This is the approach taken in our formal-
ization.) This way, IBAC prevents untrusted code no longer
on the stack from influencing the execution of a security-
sensitive operation.

The advantage of IBAC is that it avoids the need for an
explicit information-flow policy specification or code anno-
tations: the information-flow policy itself is automatically

obtained from the program’s access-control policy (which,
if absent, can be automatically computed [27, 10]), and its
enforcement is automatically derived from the existing calls
to the test and grant primitives. Unlike the Data Mark
Machine approach [16], flows that violate integrity are not
prevented; rather, they are recorded and later detected by
the new IBAC test semantics.

This paper formally describes how to define ι from α and
proves that the enforcement of ι performed by IBAC guar-
antees noninterference [12, 13, 19]. Specifically, if a test
succeeds, which indicates the output of the flow should be
trusted, then indeed that output is not influenced by any un-
trusted code, in the standard sense of noninterference [19].

1.4 Organization

The remainder of this paper is organized as follows: Sec-
tion 2 defines the syntax and semantics of the language. In
Section 3, we prove that a program passing the new IBAC
permission test is noninterferent in a novel sense. More-
over, we connect that notion to an ordinary notion of non-
interference by considering a program that ends by testing
the permissions on its trusted outputs. Section 4 revisits
the running examples of Sections 1.1 and 1.2, and shows
that IBAC properly enforces the information-flow policies
extracted from the access-control policies on those exam-
ples. Furthermore, Section 4 demonstrates the applicability
of IBAC to large-scale application code. Section 5 discusses
possible implementations of IBAC. Section 6 presents re-
lated work, and Section 7 concludes this paper.

2 Language

To formalize the model, we choose a language similar
to that of Fournet and Gordon [18], but with the addition
of mutable variables and dynamically allocated mutable

4



Types T : : = int | bool | {f :T}ref primitives; pointer to record with fields f
Declarations K : : = var x :T global variable

let p(x :T ) = R[C ] procedure with static permissions
Programs M : : = {K ; }∗ in R[C ] main program with body R[C ] in context of decls.
Commands C : : = x : = E | x .f : = E | assignment to variable and field

x : = ref{f = E} | allocate and initialize variable of record type
p(E ) | C ;C | if E then C else C | procedure call; command sequence; conditional
grant R in C | assert dynamic permissions
test R then C else C | check and branch on stack permissions
test R for E check value permissions

Expressions E : : = true | false | n | boolean and integer literals
E ⊕ E | x | x .f | null binary operators; variable; field access; null

Figure 5. Language Syntax

records to more closely model conventional object-oriented
(OO) languages. For simplicity, subclassing and dynamic
dispatch are omitted, and we use explicitly declared proce-
dures, rather than untyped λ terms, in order to treat muta-
ble variables and objects while avoiding semantic compli-
cations.

Another feature we adopt from Fournet and Gordon’s
language is that the static assignment of permissions to code
is modeled using framed expressions of the form R[C ],
where C is ordinary code and the frame, R, is a set of per-
missions. Values stored in variables and object fields have
the form R[v ], where v is a primitive value (an integer, a
boolean, a pointer, or null ); here, R reflects the fact that v
can be trusted at level at most R. Unlike Fournet and Gor-
don, we do not need the framing operation that applies a
frame to λ abstractions within an expression, because we
do not use λ abstractions (and hence do not need nested
frames).

In Java, permissions carry nontrivial structure and an im-
plication ordering. For example, the FilePermission
to write all files implies the FilePermission to write
file a.txt. On this, we follow Fournet and Gordon and use
a simple concrete representation: instead of reasoning about
sets of Java permissions, we assume there is a fixed universe
of atomic permissions and work with atomic-permission
sets. Thus, AllPermission is a set, All, likely to be in-
finite, which contains for example the FilePermission
to read a.txt. One could as well work with an arbitrary
lattice; our formulation makes the connection with stack in-
spection slightly more transparent, and allows us to use the
intuitive union and intersection operators.

2.1 Syntax

Figure 5 gives the syntax of our language. Typing rules
are straightforward and omitted. In a program K in R[C ],

the frame R represents the static permissions assigned to the
main program, which for practical purposes will be All, as in
the Sun Microsystems reference implementation of the Java
Virtual Machine (JVM) embedded in the Java 2 platform
and in the Microsoft implementation of the JVM embedded
in Internet Explorer V4.0 [43].

Security-sensitive events are security-sensitive opera-
tions, such as System.exit, that take no parameters
and have no receiver. Framing values may not be suffi-
cient to prevent untrusted code from triggering the exe-
cution of a security-sensitive event. Therefore, IBAC in-
cludes the ordinary stack-inspection mechanism. Our for-
mulation uses the eager semantics [18, 44, 43]: A com-
mand C1 is executed in the context of a set D of dynamic
permissions, which represent the permissions for which a
stack inspection would be successful; D is inspected by
the command test R then C1 else C2, which mod-
els checkPermission in Java and Demand in CLR, to-
gether with exception handling.

To model ordinary stack inspection, the body of every
procedure is framed with a set of permissions. Specifically,
in a procedure declaration, p(x :T ) = R[C ], the frame R
represents the set of the static permissions granted to pro-
cedure p. In practice, R is the set of permissions that the
current access-control policy assigns to the class in which p
is implemented. Multiple arguments for a procedure can be
encoded using records.

The novel command, test R for E , tests whether the
frame on the value of E contains R. If so, there is no effect
on the state; if not, the command aborts. Note that there is
not an else-branch to model exception handling. Indeed, if
the outcome of the test could be determined, frames would
serve as a new storage channel (just as the dynamic permis-
sions do in HBAC [5]). It could be interesting to investigate
frames on frames to allow and track such flows, but in this
paper we simply prevent them.

5



2.2 Semantics

The semantics involves framed values. A value is either
a reference, an integer or boolean literal, or null . (Note that
a record is not a value and is not framed; this provides a
proper treatment of shared mutable objects [6].) A store s
maps each global variable to a framed value R[v ]. In ad-
dition, it maps the special program-counter variable pc to a
set of permissions. Thus, s(pc) is like a label on the pro-
gram counter. A state is a pair (s, h), where s is a store and
h a heap; the latter is a finite partial function from refer-
ences to records (that is, mapping pointers to labeled tuples
of framed values).

Our semantics is designed to resemble that of Fournet
and Gordon; it uses an eager semantics for stack inspection,
thereby avoiding the need for an explicit run-time stack.
However, it differs in several ways. We add the heap and
store to model mutable variables, framed values to track in-
formation flow, and a variable pc to track information flow
via the program counter.

We write (K in R[C ], s, h) ⇓ (s ′, h ′) to express that
a program K in R[C ], executed from initial state (s, h),
terminates in state (s ′, h ′). (Our security conditions pertain
to terminating computations only.)

This relation is defined in terms of a relation on com-
mands: we write

(C , s, h) ⇓S
D (s ′, h ′)

to express that command C terminates in state (s ′, h ′) when
executed from initial state (s, h) under static permissions S
and dynamic permissions D—where D is invariably a sub-
set of S . In fact, ⇓S

D depends on the procedure declarations
in K , but we elide K for brevity since it is fixed.

The semantics of a complete program is defined as fol-
lows:2

(C , s0, h) ⇓R
R (s ′, h ′) s0 = [s | pc 7→ R]

(K in R[C ], s, h) ⇓ (s ′, h ′)

where, as observed, R is typically All.
The relation (C , s0, h) ⇓R

D (s ′, h ′) is defined by induc-
tion3 on ⇓ and cases on C , but first we give the semantics
of expressions. The relation (E , s, h) ⇓S

D R[v ] means that,
in state (s, h), expression E evaluates, under static permis-
sions S and dynamic permissions D , to framed value R[v ].
The intention, which will be confirmed by Theorem 3.4, is
that R records the influences on v—which are only by data

2The notation [s | x 7→ . . .] indicates an update of variable x in store
s , where x is either a global variable or the program-counter variable, pc.
Similarly, the notation [h | o.f 7→ . . .] indicates an update of field f for
the record of reference o in the heap.

3To be precise, our rules inductively define a family of relations ⇓S
D for

all S and all D ⊆ S . This is needed because the rules for procedure call
and grant change the static and dynamic permissions.

flow, since we omit conditionals at the level of expressions.
Relation ⇓S

D is defined inductively by the following rules:4

(true, s, h) ⇓S
D S [true] (false, s, h) ⇓S

D S [false]

(n, s, h) ⇓S
D S [n]

(E1, s, h) ⇓S
D R1[v1] (E2, s, h) ⇓S

D R2[v2]

(E1 ⊕ E2, s, h) ⇓S
D R1 ∩ R2[v1 ⊕ v2]

s(x ) = R[v ]

(x , s, h) ⇓S
D S ∩ R[v ]

(x , s, h) ⇓S
D R[o] hof = R′[v ]

(x .f , s, h) ⇓S
D R ∩ R′[v ]

Next, we specify two unusual operations for the se-
mantics of commands. We assume given two functions,
write oracle and taint , such that:

• For any C , s, h , write oracle(C , s, h) is a pair
(V ,F ), where V is a set of variables and F a set of
locations. Each location is of the form (o, f ), where o
is a reference and f a field name.

• For any R,V ,F , s, h , taint(R,V ,F , s, h) is a state
(s ′, h ′) such that s ′(pc) = s(pc). Moreover, the do-
mains of h and h ′ are the same.

Furthermore, these operations satisfy the following condi-
tions:

• write oracle(C , s, h) represents the writes of
C in (s, h). If (C , s, h) ⇓S

D (s ′, h ′) and
write oracle(C , s, h) = (V ,F ), then V is the
set of variables updated from s to s ′ and F is the set
of locations updated from h to h ′.

• taint changes the state only by shrinking frames. That
is, if taint(R,V ,F , s, h) = (s ′, h ′), s(x ) = P [v ],
and s ′(x ) = P ′[v ′], then P ⊇ P ′ and v = v ′, and
similarly for record fields.

• taint imposes R on (V ,F ). That is, for any x in V ,
if s(x ) = P [v ] and s ′(x ) = P ′[v ′] then R ⊇ P ′, and
similarly for record fields.

For programs using only variables, write oracle can be
overapproximated by simple static analysis that tracks as-
signment targets. To take the heap into account, techniques
from program analysis and verification (where this is known
as a “modifies clause”) can be used; see, for example, [2]
and references therein. A dynamic oracle can be given

4In the rules, parse R1∩R2[v ] as (R1∩R2)[v ]. For field access, note
that ho is the record at reference o and thus hof is the value of its field f .

6



p(x :T ) = R[C ] (E , s, h) ⇓S
D P [v ] (C , [s | x 7→ s(pc) ∩ S ∩ P [v ]], h) ⇓R

D∩R (s ′, h ′)

(p(E ), s, h) ⇓S
D (s ′, h ′)

R ⊆ D (C1, s, h) ⇓S
D (s ′, h ′)

(test R then C1 else C2, s, h) ⇓S
D (s ′, h ′)

R 6⊆ D (C2, s, h) ⇓S
D (s ′, h ′)

(test R then C1 else C2, s, h) ⇓S
D (s ′, h ′)

(E , s, h) ⇓S
D P [v ] R ⊆ P

(test R for E , s, h) ⇓S
D (s, h)

(C , s, h) ⇓S
D∪(R∩S) (s ′, h ′)

(grant R in C , s, h) ⇓S
D (s ′, h ′)

(C1, s, h) ⇓S
D (s1, h1) (C2, s1, h1) ⇓S

D (s ′, h ′)

(C1;C2, s, h) ⇓S
D (s ′, h ′)

(E , s, h) ⇓S
D R[false] s0 = [s | pc 7→ s(pc) ∩ R]

(C2, s0, h) ⇓S
D (s2, h2) (V ,F ) = write oracle(C1, s, h) (s ′, h ′) = taint(s0(pc),V ,F , s2, h2)

(if E then C1 else C2, s, h) ⇓S
D ([s ′ | pc 7→ s(pc)], h ′)

(x , s, h) ⇓S
D R[o] (E , s, h) ⇓S

D R′[v ]

(x .f : = E , s, h) ⇓S
D (s, [h | o.f 7→ s(pc) ∩ S ∩ R ∩ R′[v ]])

(E , s, h) ⇓S
D R[v ] o 6∈ dom(h)

(x : = ref{f = E}, s, h) ⇓S
D ([s | x 7→ s(pc) ∩ S [o]], [h | o.f 7→ s(pc) ∩ S ∩ R[v ]])

Figure 6. Command Semantics

by simulating the command for some bounded number of
steps. The most precise taint function changes (s, h) to
(s ′, h ′) by intersecting R with the frames of the values in
the variables and locations in V and F , respectively.

Finally, we can give the semantics of commands. For
assignments, the rule is as follows:

(E , s, h) ⇓S
D R[v ]

(x : = E , s, h) ⇓S
D ([s | x 7→ s(pc) ∩ S ∩ R[v ]], h)

Expression E evaluates to some framed value R[v ]; the
store is updated using the frame s(pc) ∩ S ∩ R to take into
account both the control dependence recorded in pc and the
static permissions of the code performing the assignment.

It is well known that control dependence allows infor-
mation to flow via the absence of an assignment. This is
tracked in the semantics of conditional, which is defined as
follows:

(E , s, h) ⇓S
D R[true]

s0 = [s | pc 7→ s(pc) ∩ R] (C1, s0, h) ⇓S
D (s1, h1)

(V ,F ) = write oracle(C2, s, h)
(s ′, h ′) = taint(s0(pc),V ,F , s1, h1)

(if E then C1 else C2, s, h) ⇓S
D ([s ′ | pc 7→ s(pc)], h ′)

Here, C1 is executed with initial program counter pc that

reflects the control dependence [16]. write oracle is ap-
plied to the branch not taken, and taint is used to shrink
the frames of values of potentially-updated variables and
heap locations using the frame of the branch condition. An
example showing the usage of the write oracle and taint
functions is discussed in Section 2.3.

The remaining rules are similar and can be found in
Figure 6. As remarked earlier, we do not allow ob-
servable branching on frames of expressions, since this
would introduce a new storage channel. Thus, noth-
ing like write oracle/taint is needed in the semantics of
test R for E .

2.3 Example

For brevity, let us augment the set of commands with
skip, with semantics (skip, s, h) ⇓S

D (s, h). Now consider
the evaluation of the code

var l , x , y : int; var c :bool; in

l : = x ; if c then l : = y else skip

in a store s , where s(pc) = P , s(x ) = R0[0], s(y) = R1[1],
and s(c) = R[true]. Since this code is simple imper-
ative, we elide the heap h in the semantics. We have

7



(l : = x , s) ⇓S
D s1, where s1 = [s | l 7→ P ∩ S ∩ R0[0]].

The evaluation of (if c then l : = y else skip, s1) yields
the store s ′ in the following manner:

(c, s1) ⇓S
D R[true] s0 = [s1 | pc 7→ P ∩ R]

s ′ = [s0 | l 7→ P ∩ S ∩ R ∩ R1[1]]
(l : = y , s0) ⇓S

D s ′ ∅ = write oracle(skip, s1)
s ′ = taint(P ∩ R,∅, s ′)

(if c then l : = y else skip, s1) ⇓S
D [s ′ | pc 7→ P ]

On the other hand, consider the evaluation of the same
code in a store t where t(pc) = P ′, t(x ) = R′0[0], t(y) =
R′1[1], and t(c) = R′[false]. We have (l : = x , t) ⇓S

D t1,
where t1 = [t | l 7→ P ′ ∩ S ∩ R′0[0]]. The evaluation of
(if c then l : = y else skip, t1) yields the store t ′ in the
following manner:

(c, t1) ⇓S
D R′[false] t0 = [t1 | pc 7→ P ′ ∩ R′]

(skip, t0) ⇓S
D t0 {l} = write oracle(l : = y , t1)
t ′ = taint(P ′ ∩ R′, {l}, t0)

(if c then l : = y else skip, s1) ⇓S
D [t ′ | pc 7→ P ′]

Note that, as a result of applying the taint function, t ′(l) =
P ′ ∩ R′ ∩ S ∩ R′0[0].

3 Noninterference

The idea of our information-flow policy is that sections
of code guarded (immediately dominated) by test calls are
sensitive and thus should also be guarded by permission
checks for the values read in these sections of code. In static
labeling, an observer at some level L is assumed to read
only the parts of state with integrity label at most L, that is,
trustworthy for the observer. Here, the observer is expected
to check permissions on values it reads. This motivates the
main definitions of indistinguishability that are used to de-
fine noninterference, which is the semantic interpretation of
the information-flow policy.

This section proves two main results: Theorem 3.4 estab-
lishes that all programs are noninterferent in a nonstandard
sense: given any two initial states that agree on variables
and records that are trustable (with frames containing some
set Q of permissions required by an observer), then the fi-
nal states agree on the values that are trustable for Q . The-
orem 3.5 connects this property with a standard notion of
noninterference [19], by considering programs that include
explicit permission checks.

For simplicity, in this version of the paper, the results
in this section are formalized without the heap. Note that,
except for the choice of fresh references in the semantics
of ref , the language is deterministic. In the full paper, we
assume an arbitrary deterministic allocator and track allo-
cation behavior using renamings as in [6]. This lets us use

a notion of noninterference suitable for deterministic sys-
tems.

Definition 1 (Q-indistinguishability, ∼Q ) States s and t
are Q-indistinguishable for an observer with permission set
Q , written s ∼Q t , iff for all R,R′, v , v ′ and all variables
x (other than pc) the following is true:

if s(x ) = R[v ] and t(x ) = R′[v ′],
then R ⊇ Q ∧ R′ ⊇ Q ⇒ v = v ′.

Lemma 3.1 gives a sense in which indistinguishability is
preserved by expressions (analogous to the simple security
property, or “read confinement” [6]). Its proof is a straight-
forward induction on ⇓S

D .

Lemma 3.1 If s ∼Q t , (E , s) ⇓S
D R[v ], and (E , t) ⇓S

D

R′[v ′], then R ⊇ Q ∧ R′ ⊇ Q ⇒ v = v ′.

Two additional technical results are needed. Because
taint only reduces frames, we get the following lemma us-
ing the definition of ∼Q :

Lemma 3.2 If s ∼Q t and s0 = taint(R,V , s), then
s0 ∼Q t for any R,V . Symmetrically, if s ∼Q t and
t0 = taint(R,V , t), then s ∼Q t0.

Since the semantics tracks control dependence in vari-
able pc and uses pc in the semantics of variable (and field)
writes, we get the following lemma:

Lemma 3.3 Suppose (C , s) ⇓R
S t and t(x ) differs from

s(x ), that is, x is written by C . If t(x ) = P [v ], then
P ⊆ s(pc).

In the following sense, every program is noninterferent!

Theorem 3.4 If s ∼Q s ′, (C , s) ⇓S
D t , and (C , s ′) ⇓S

D t ′,
then t ∼Q t ′.

Proof: The proof is by induction on ⇓S
D . We give just the

case where C is if E then C1 else C2. As in the se-
mantics, let (E , s) ⇓S

D R[b] and (E , s ′) ⇓S
D R′[b′]. Let

s0 = [s | pc 7→ s(pc)∩R] and s ′0 = [s ′ | pc 7→ s ′(pc)∩R′].
We have two subcases depending on whether or not the two
runs take the same branch:

1. The same branch is taken. Without loss of generality,
let the branch taken be C1. Let (C1, s0) ⇓S

D t1 and
(C1, s ′0) ⇓S

D t ′1. By Definition 1 and hypothesis s ∼Q

s ′ we have s0 ∼Q s ′0, so by induction on ⇓S
D for C1

we have t1 ∼Q t ′1. Let V = write oracle(C2, s0) and
let V ′ = write oracle(C2, s ′0). Thus, by semantics,
t = taint(s(pc) ∩ R,V , t1) and t ′ = taint(s ′(pc) ∩
R′,V ′, t ′1). From t1 ∼Q t ′1, using Lemma 3.2, we get
t ∼Q t ′1, and using Lemma 3.2 again, we get t ∼Q t ′.

8



2. Different branches are taken. Without loss of general-
ity, let b = true and let b′ = false . Let (C1, s0) ⇓S

D t1
and (C2, s ′0) ⇓S

D t ′1. Let V = write oracle(C2, s0)
and let V ′ = write oracle(C1, s ′0). Thus, by seman-
tics, the final states are t = taint(s(pc) ∩ R,V , t1)
and t ′ = taint(s ′(pc)∩R′,V ′, t ′1). To show t ∼Q t ′,
consider any x and let t(x ) = P [v ] and t ′(x ) =
P ′[v ′]. If t(x ) = s(x ) and t ′(x ) = s ′(x ) then the
Q-indistinguishibility condition holds from hypothe-
sis s ∼Q s ′. It remains to consider two cases: either
t(x ) differs from s(x ) or t ′(x ) differs from s ′(x ).

These cases are symmetric so, without loss of gener-
ality, suppose t(x ) differs from s(x ). Thus, x was up-
dated by C1, so t(x ) = P [v ] for some P , v with P ⊆
s(pc)∩R (owing to semantics and Lemma 3.3 applied
to (C1, s0) ⇓S

D t1). Note that we have either Q 6⊆ R
or Q 6⊆ R′ since otherwise, by Lemma 3.1, both runs
would have taken the same branch. If Q 6⊆ R, then
Q 6⊆ P (because P ⊆ s(pc) ∩ R), so the antecedent
for Q-indistinguishability of x is falsified and we are
done. Otherwise, Q 6⊆ R′. Now, since x is updated by
C1 from s0, by assumption on write oracle we have
x ∈ V ′ and thus, by assumption about taint , we have
P ′ ⊆ s ′(pc)∩R′, so Q 6⊆ P ′ and again the antecedent
for Q-indistinguishability of x is falsified. This con-
cludes the proof of t ∼Q t ′. 2

Finally, we connect Theorem 3.4 with the standard no-
tion of noninterference [19] for policies that are specified
by labeling input and output channels with fixed levels, and
such that inputs labeled as untrusted do not influence out-
puts labeled as trusted.

Without loss of generality, consider a main program of
the form

K ; in R[test R for w ;C ; test R for w ]

where w is one of the global variables. We interpret this to
specify an implicit information-flow policy ι wherein w is
trusted and the other variables are not. For this policy, the
interesting observer level is R.

We say that two states s, t are ι-indistinguishable pro-
vided that s(w) = t(w), and for all other variables x , the
frames of s(x ) and t(x ) do not contain R. We say s and
t are weakly ι-indistinguishable if they agree on the value
of w though not necessarily its frame: s(w) = P [v ] and
t(w) = P ′(v ′) with v = v ′). (There is no condition on
other frames.)

Theorem 3.5 Consider two ι-indistinguishable initial
states s, t . If s1 is the final state from running the program
on s and t1 is the final state from running the program on
t , then s1 is weakly ι-indistinguishable from t1.

That is, if there is no access error when the final test is per-
formed, then w has not been influenced by untrusted inputs.
Proof: If the initial test R for w fails in one of the compu-
tations there is nothing to prove. If it succeeds in both com-
putations then we have s ∼R t . Let s1 and t1 be the states
after executing C . By Theorem 3.4 we have s1 ∼R t1.
Let s1(w) = P [v ] and t1(w) = P ′[v ′]. If the final tests
test R for w both succeed then by semantics we have
P ⊇ R and P ′ ⊇ R. Thus, by definition of ∼R we have
v = v ′ as was to be proved. 2

4 Case Study

Section 1 presented examples of Java programs for
which SBAC was shown to be too permissive and HBAC
too restrictive. This section revisits those examples, show-
ing that IBAC performs as expected by enforcing the
information-flow policy extracted from the access-control
policy. Additionally, this section covers examples from
production-level Java code, demonstrating the need for
IBAC when enabling security on Java code.

For simplicity, the language that we defined in Section 2
to introduce IBAC only dealt with global variables. In this
section, to model Java more closely, we allow the language
to have local variables too; just like a global variable, each
local variable is mapped to a framed value. Additionally,
we assume that a command of the form B b = new B(),
which allocates and constructs a new object of type B, and
assigns it to variable b, causes that object to be framed by
s(pc) ∩ S ∩ R, where S is the set of the static permissions
of the code performing the allocation and R is the set of
permissions that the access-control policy grants to class B.
A similar approach is taken when the type of the assigned
value is primitive, with the understanding that, in that case,
R = All .

4.1 Revisiting the Running Examples

For the example of Figure 1, according to the semantics
of Section 2.2, we have the following:

• Initially, s(pc) = All .

• The body of A.main is executed with static permis-
sions R1 and dynamic permissions R1.

• The object of type B pointed to by b in A.main is
framed with All ∩ R1 ∩ R2 = ∅.

• The String object "password.txt" allocated in
m1 is framed with All ∩ R2 ∩ R3 = ∅.

• The String object assigned to fileName in
A.main is framed with All ∩ R1 ∩∅ = ∅.

9



• The FileOutputStream object pointed to by f in
A.main is framed with All ∩ R1 ∩ R3 = R1.

• The String object pointed to by the name parameter
in the FileOutputStream.<init>(String)
constructor is framed with All ∩ R1 ∩∅ = ∅.

• The File object allocated in the
FileOutputStream.<init>(String) con-
structor and pointed to by file is framed with
∅ ∩ R3 ∩ R3 = ∅ since now the program counter is
control-dependent on the String object pointed to
by name, so s(pc) = ∅.

• The String object pointed to by name in
the FileOutputStream.<init>(File,
boolean) constructor is framed with ∅ since it is
the return value of file.getPath, and this method
returns exactly the object pointed to by fileName
in A.main. Moreover, the value of name is control-
dependent on the File object pointed to by file,
which implies that s(pc) = ∅.

• The value of the boolean parameter append
in the FileOutputStream.<init>(File,
boolean) constructor is framed with
All ∩ R3 ∩All = All .

• The FileOutputStream.<init>(String)
constructor body is executed with static permissions
R3 and dynamic permissions R1 ∩ R3 = R1.

• The FileOutputStream.<init>(String,
boolean) constructor body is executed with
static permissions R3 and dynamic permissions
R1 ∩ R3 = R1.

The execution of the IBAC test command in con-
structor FileOutputStream.<init>(String,
boolean) performs the following operations:

1. Verify that the set D of the dynamic permissions as-
sociated with the current stack contains the singleton
R = {FilePermission "passwords.txt",
"write"}. This test succeeds because D = R1 ⊃
R.5 This would have been the only check performed
by the SBAC test.

2. Verify that the frame of the boolean value pointed
to by append contains R. This test is caused
by the fact that the value of append is read
in the security-sensitive operation guarded by the
checkPermission call. This test also succeeds
since that frame is All .

5We are abusing the notation here by considering the permission in R1

as a set of atomic permissions, one of which is the permission to write file
password.txt, as explained in Section 2.

3. Similarly, verify that the frame of the String object
pointed to by name contains R. This test fails because
that frame is ∅.

Therefore, IBAC causes the security-sensitive operation
to fail since it has detected an integrity violation at the
point in which the IBAC test has been executed. As
observed, SBAC would not have recognized the integrity
violation, thereby allowing b.m1 to cause the contents
of passwords.txt to be overwritten. Coincidentally,
HBAC would have caused this program to fail, but only be-
cause the execution of b.m1 was in the history.

Another interesting example is the program of Figure 3,
which uses the grant primitive doPrivileged. Assume
that an untrusted client invokes m2 on an object c of type C
after setting c.logFileName to "passwords.txt".
The frame for this value will be All ∩ R′2 ∩ R′3 = ∅. Fol-
lowing the same reasoning as in the example of Figure 1,
we would conclude that the following must hold:

• The String object pointed to by name in con-
structor FileOutputStream.<init>(File,
boolean) is framed with ∅ since it is the return
value of file.getPath, and this method returns
exactly the object assigned to logFileName by
the untrusted client. Moreover, the value of name is
control dependent on the File object pointed to by
file, which is framed with ∅, so s(pc) = ∅.

• The value of the boolean parameter append
in the FileOutputStream.<init>(File,
boolean) constructor is framed with All∩R′3 = All
since that value originated from constructor
FileOutputStream.<init>(String).

The IBAC test performs the following operations:

1. Verify that the set D of the dynamic permis-
sions associated with the current stack of execu-
tion contains singleton R = {FilePermission
"passwords.txt", "write"}. This test suc-
ceeds because D = R′3∩R′1 = R′1 ⊃ R. The presence
of doPrivileged on the stack prevents R′2 from be-
ing part of the computation of D . This would have
been the only test performed by SBAC.

2. Verify that the frame of the boolean value pointed to
by append contains R. This test also succeeds since
that frame is All , like in the previous example.

3. Verify that the frame of the String object pointed to
by name contains R. This test fails because that frame
is ∅.

Therefore, IBAC dynamically detects the presence of
tainted variables in privilege-asserting code, solving a seri-
ous problem previously identified in the literature [33], and
forces interferent programs permitted by SBAC to fail.

10



The program of Figure 4 is useful to illustrate the dif-
ference between IBAC and HBAC. Here, when the IBAC
test is performed, the values used in the security-sensitive
operation dominated by the test are framed as follows:

• The String object pointed to by name in
the FileOutputStream.<init>(File,
boolean) constructor is framed with R′′1 since it is
the return value of file.getPath, which returns
exactly the String object "passwords.txt"
allocated in F.main and passed to
FileOutputStream.<init>(String).
Moreover, the value of name is control dependent on
the File object pointed to by file, which also is
framed with R′′1 .

• The value of the boolean parameter append
in the FileOutputStream.<init>(File,
boolean) constructor is framed with
All since that value originated from the
FileOutputStream.<init>(String) con-
structor.

The IBAC test performs the following operations:

1. Verify that the set D of the dynamic permis-
sions associated with the current stack of execu-
tion contains singleton R = {FilePermission
"passwords.txt", "write"}. This test suc-
ceeds because D = R′′3 ∩ R′′1 = R′′1 ⊃ R.

2. Verify that the frame of the boolean value pointed to
by append contains R. This test also succeeds since
that frame is All .

3. Verify that the frame of the String object pointed to
by name contains R. This test succeeds because that
frame is R′′1 ⊃ R.

The HBAC test would have unjustly caused this program
to fail because g.m3 is in the history, and class G has been
granted no permissions.

4.2 Production-level Code

The programs of Sections 1.1 and 1.2 that we have
just revisited are not contrived examples, but have been
inspired by production-level code. Currently, the core
of the Eclipse platform, called the Rich Client Platform
(RCP), is undergoing extensive code rewriting to permit
it to run with security enabled [15]. This work is being
performed by using a static analyzer to model the stack
inspection mechanism [39] and detect the permission set
required by each RCP component [27] and the security-
sensitive operations that should be wrapped into privilege-
asserting blocks of code to shield other Eclipse compo-
nents from unnecessary permission requirements [33]. The

problem with SBAC, as we have noted, is that an un-
trusted component may influence the security-sensitive op-
erations performed in a more trusted component, with-
out being on the stack of execution when the security
check is performed. A concrete example is the following:
Method evaluate in SystemTestExpression, in
the org.eclipse.core.expressions RCP compo-
nent, accesses a security-sensitive system property through
the following code:

String str = (String)
AccessController.doPrivileged(
new PrivilegedAction() {

public Object run() {
return System.getProperty(fProperty);

}
});

Unfortunately, the String object pointed to by
fProperty is influenced, through a series of direct
and indirect flows, by the String object pointed to
by the ELEMENT ACTIVE WHEN constant in class
HandlerPersistence. This class is located in
the org.eclipse.ui.workbench RCP compo-
nent, which in the current version of the RCP has
not been granted the PropertyPermission re-
quired to execute the code above. In an SBAC sys-
tem such as the current version of Java on top of
which Eclipse runs, a malicious attacker could modify
the value of ELEMENT ACTIVE WHEN and condi-
tion the property being accessed. Since no method
of HandlerPersistence is on the stack when
System.getProperty calls checkPermission,
this integrity exposure would not disappear by simply
removing the privilege-asserting block around the call
to System.getProperty. Conversely, by tracking
information flows to each security-sensitive operation and
testing not only the callers on the current stack of execution
up to the doPrivileged caller, but also the labels
on all the values read in the security-sensitive operation
guarded by the checkPermission call, IBAC detects
the integrity exposure. It is now up to the developers and
system administrators to decide whether the code needs
to be corrected to eliminate this exposure or whether it is
safe to grant HandlerPersistence the appropriate
PropertyPermission.

5 Proposed Implementation

We propose two different implementations for IBAC en-
forcement: a completely static enforcement, and one that
combines static analysis with dynamic enforcement.

A completely static IBAC enforcement can be achieved
by considering the set of all the statements guarded by the
test. For each statement s guarded by a testR command,

11



it must be the case that no statement s ′ ∈ backslice(s) orig-
inates from code with static permission set P such that P 6⊇
R. Here, backslice is the function that maps each statement
s to its static backwards slice, consisting of all the (transi-
tive) predecessors of s along control- and data-dependence
edges in the Program Dependence Graph (PDG). The set of
statements guarded by a test can be assumed to be the set
of statements immediately following the test call.6 For ex-
ample, in the FileOutputStream code of Figure 2, the
statements guarded by the checkPermission call are
the assignment to append and the calls to openAppend
and open.

The stack inspection mechanism necessary to prevent
untrusted code from causing the execution of a security-
sensitive event can also be modeled statically. A call graph
and a points-to graph [21] representing the execution of
the program under analysis are built. For each node in
the call graph corresponding to a checkPermission
method call, the set P of abstract Permission objects
that, according to the model, could have flowed to the
Permission parameter of checkPermission is com-
puted. The level of abstraction could be by allocation
site, as in Andersen’s analysis [3]. Next, each of these
Permission sets is propagated backwards in the call
graph, performing set unions at merge points, until a fix
point is reached [26]. The only nodes in this fix-point iter-
ation that kill the reverse propagation of the Permission
sets are the doPrivileged nodes, to model the require-
ment that a call to doPrivileged on a stack of execu-
tion causes the stack inspection to stop regardless of the
Permission being checked.7 Once a fix point has been
reached, each node in the call graph is mapped to a set of
abstract Permission objects, overapproximating the per-
missions required at run time by the method represented by
that node. The IBAC enforcement will require each class in
the program under analysis to be granted at least the permis-
sions required by each of its declared methods according to
the model.

This approach has the advantage that it is sound; it iden-
tifies all the integrity violations. From a security perspec-
tive, this is important because all such violations will be

6In fact, this should be a security coding guideline, which, if enforced,
helps preventing violations of the Principle of Complete Mediation [35] as
well as Time-Of-Check-To-Time-Of-Use (TOCTTOU) attacks [11].

7We are assuming that the program is a Java program. For other
languages, the algorithm is almost the same, with only slight changes.
For example, in CLR, checkPermission would have to be replaced
by Demand, doPrivileged by Assert, and Permission by
IPermission. Additionally, it should be noted that a doPrivileged
node kills the universe of all the Permission objects associated with the
program under analysis, whereas Assert only kills the IPermission
objects that have been passed to its IPermission parameter. The reason
behind this difference is that doPrivileged stops the stack inspection
indiscriminately, while Assert only stops it for those IPermission
objects that have been passed as parameters to it [32].

detected. Its disadvantage is that it is potentially conser-
vative, with the result that some of the reported violations
may in reality be false alarms. The precision of the analy-
sis can significantly affect its scalability. Alternatively, the
stack-inspection mechanism can still be enforced dynami-
cally, while static analysis is used only to track direct and
indirect flows causing integrity violations.

Dynamic IBAC enforcement can be carried out by as-
sociating a label with every value, based on the static per-
missions granted by the current access-control policy. At
each existing testR command (corresponding to calls to
checkPermission in Java and Demand in CLR), an or-
dinary stack inspection is performed. However, it is neces-
sary for the frame P of each expression E guarded by the
test to satisfy P ⊆ R. This requires inserting additional
test R for E calls for each such expression E . This ap-
proach must be coupled with a static analysis implementing
the write oracle , which is responsible for overapproximat-
ing the set of values that would be modified at every branch
not taken, as explained in Section 2.2.

6 Related Work

Early work by Denning and Denning [13] focuses on
static analysis for information flow. Subsequently, Goguen
and Meseguer [19] introduce a more general notion of infor-
mation flow based on noninterference. Volpano, et al. [41]
show a type-based algorithm that certifies implicit and ex-
plicit flows and also guarantees noninterference.

Noninterference is traditionally the technical criterion
used for proving correctness of security analysis algorithms
or type systems. However, it is also hard to check non-
interference directly. Snelting et al. [37] connect PDGs
with noninterference. Hammer et al. [23] present a PDG-
based algorithm for verifying noninterference: for any out-
put statement s , it must be the case that any statement in
backslice(s) must have a security labels lower than the se-
curity label of s . It should be noted, however, that type-
system-based algorithms have the advantage of supporting
compositional analysis, which means that parts of programs
can be analyzed in isolation. This is generally hard to do in
PDG-based analysis.

Taint analysis is an integrity problem, in which the fo-
cus is whether untrusted data obtained from the user might
influence other data that the system trusts. The notion of
tainted variables became known with the Perl language.
In Perl, using the -T option allows detecting tainted vari-
ables [42]. Shankar et al. present a tainted-variable analy-
sis for CQual using constraint graphs [36]. To find format-
string bugs, CQual uses a type-qualifier system [17] with
two qualifiers: tainted and untainted. A constraint graph is
constructed for a CQual program. If there is a path from
a tainted node to an untainted node in the graph, an error

12



is flagged. Newsome and Song [31] propose a dynamic
taint analysis that catches errors by monitoring tainted vari-
ables at run time. Data originating or arithmetically derived
from untrusted sources, such as the network, are marked
as tainted. Tainted variables are tracked at run time, and
when they are used in a dangerous way an attack is de-
tected. Volpano et al. [41] relate taint analysis to enforcing
information-flow policies through typing. Ashcraft and En-
gler [4] also use taint analysis to detect software attacks due
to tainted variables. Their approach provides user-defined
sanity checks to untaint potentially tainted variables. To
perform taint analysis, one needs to identify sources and
sinks of possibly-tainted data. This amounts to identifying
methods that originate a tainted value and methods that use
a possibly-tainted value. Livshits and Lam’s analysis al-
gorithm [28] requires prior computation of a specific flow-
insensitive points-to heap analysis and assumes the pres-
ence of programmer-supplied descriptors for sources and
sinks. Additionally, their algorithm requires the presence
of descriptors for library methods handling objects through
which taintedness may flow. This approach does not han-
dle indirect flows. By contrast, the algorithm described in
this paper takes into account indirect flows and does not re-
quire any programmer-defined descriptor. Pistoia et al.[33]
use program slicing to detect tainted variables in privilege-
asserting code. The work presented in this paper subsumes
that work, as observed in Section 4.1.

Stoughton [38] compares access control and informa-
tion flow in a simple imperative language with semaphores.
No formal results are proven, nor is there a static analysis
for information flow. Myers’ Jif tool [29] uses type-based
static analysis [41, 13] to track information flow in Java,
but like in many other works the information-flow policy
is expressed by a static labeling assumed given. Baner-
jee and Naumann [6] augment such a type system with
an effect analysis for SBAC, and allow that a procedure’s
labeling may depend on the permissions authorized for it
at runtime; noninterference is proved (and has even been
machine-checked [30]). However, their information lat-
tice is separate from permissions. They also adapt their
system to HBAC, where the dynamic permissions can be
exploited as a storage channel [5]. Barthe and Rezk [8]
prove noninterference for a security type system for Java
bytecode. Barthe et al. [7] prove that typable source code
compiles to typable bytecode. Zhao and Boyland [45] com-
bine type-based and dynamic checks to improve security of
stack inspection by tracking data flows. However, they do
not consider implicit flow. In contrast to static checking of
noninterference, Le Guernic, et al. [22] consider dynamic,
automaton-based, monitoring of information flow for a sin-
gle execution of a sequential program. The mechanism is
based on a combination of dynamic and static analyses. The
dynamic analysis accepts or rejects a single execution of a

program without necessarily doing the same for all other ex-
ecutions. The automaton is used to guarantee confidential-
ity of secret data and takes into account direct as well as im-
plicit flows. The static analysis is used to overapproximate
implicit indirect flows—that is, the branches not executed
during the execution of conditionals—and to generate cor-
responding branch-not-taken inputs to the automaton. This
is similar in spirit to the write oracle in our semantics. On
the other hand, that work does not consider the derivation of
an information-flow policy from an access-control policy.

A number of works focus on stack inspection as an
access-control policy enforcement, with the purpose of
defining alternative implementations and studying opti-
mization techniques. Wallach, et al. [44, 43] present an
approach called Security Architecture Formerly Known as
Stack Inspection (SAFKASI), which uses the calculus of
Security-Passing Style (SPS) to enforce a form of access
control equivalent to stack inspection. Pottier et al.[34] ex-
tend and formalize the SPS calculus via type theory using a
λ-calculus, called λsec. Jensen, et al. [25] focus on proving
that code is secure with respect to a global security policy.
Their model uses operational semantics to prove the prop-
erties, using a two-level temporal logic, and shows how to
detect redundant authorization tests. Bartoletti, et al. [9]
are interested in optimizing performance of run-time autho-
rization tests by eliminating redundant tests and relocating
others as needed. Rather than analyzing security policies as
embodied by existing code, Erlingsson and Schneider [40]
describe a system that inlines reference monitors into the
code to enforce specific security policies. This approach can
reduce or eliminate redundant authorization tests. Koved,
et al. [27] use static analysis for identification of permission
requirements. Besson, et al. [10] present a static analysis
technique for verifying the security of libraries in SBAC
systems.

7 Discussion

In this paper, we have introduced IBAC, a new access-
control model that, for any security-sensitive operation,
verifies that all the code responsible for that operation
is sufficiently authorized. IBAC automatically infers the
information-flow policy labels for a program from an exist-
ing access-control policy associated with the program, and
transforms existing access-control tests into information-
flow tests. The idea behind IBAC comes from a process
that happens quite often in production-level code; precisely,
code that was written to run without SBAC enforcement,
is later required to run with SBAC enabled. System ad-
ministrators must figure out which permissions that code
requires, and developers must insert grant calls appropri-
ately to prevent unnecessary permission requirements from
percolating up the stack and affect client code. However, an

13



inherent flaw in SBAC is that code influencing a security-
sensitive operation may no longer be on the stack of execu-
tion for that operation. Therefore, an SBAC test call may
fail to verify the permission assignments of all the code as-
sociated with a security-sensitive action, and a grant call
may allow untrusted code to influence, through tainted vari-
ables, the execution of trusted library code. Furthermore, in
this paper, we have compared IBAC to HBAC and demon-
strated that IBAC permits the execution of safe programs
that HBAC would instead reject.

SBAC is also vulnerable to confidentiality attacks in sys-
tems that enforce capability-based security. Consider for
example the Java program in Figure 4. As observed in Sec-
tion 4.1, IBAC accepts that program. Suppose, however,
that the FileOutputStream object created in F.main
is inadvertently allowed to escape the security context in
which it was created. For example, it could be passed
as a parameter to a method m4 of an object h of type H,
or stored into the heap by F.main and subsequently ac-
cessed by h, where H is a class with no FilePermission
"passwords.txt", "write". Now, h.m4 could call
write on that FileOutputStream object, and its per-
missions are not checked since no object of type H was
on the stack when that FileOutputStream object was
created—a confidentiality violation. This paper has dis-
cussed the integrity aspects of IBAC. In the future, we
would like to extend this work to confidentiality as well.
Another interesting area of research is how to integrate
IBAC with a mechanism for declassification.

So far, we have implemented a subsystem of IBAC,
which only enforces the rejection of integrity violations
caused by tainted variables in privilege-asserting code. We
plan to have a full implementation of IBAC enforcement
and to validate its usefulness on production-level code that
has adopted SBAC as its form of access control.

References

[1] M. Abadi and C. Fournet. Access Control Based on Ex-
ecution History. In Proceedings of the 11th Network and
Distributed System Security Symposium (NDSS 2003), San
Diego, CA, USA, Feb. 2003.

[2] T. Amtoft, S. Bandhakavi, and A. Banerjee. A Logic for In-
formation Flow in Object-Oriented Programs. In Proceed-
ings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2006), pages
91–102, Charleston, SC, USA, Jan. 2006. Extended version
as KSU CIS-TR-2005-1.

[3] L. O. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, University of
Copenhagen, Copenhagen, Denmark, May 1994.

[4] K. Ashcraft and D. Engler. Using Programmer-Written
Compiler Extensions to Catch Security Holes. In Proceed-
ings of the 2002 IEEE Symposium on Security and Privacy,

pages 143–159, Oakland, CA, USA, May 2002. IEEE Com-
puter Society.

[5] A. Banerjee and D. A. Naumann. History-based Ac-
cess Control and Secure Information Flow. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors,
Construction and Analysis of Safe, Secure, and Interopera-
ble Smart Devices, International Workshop (CASSIS 2004),
Revised Selected Papers, volume 3362 of Lecture Notes in
Computer Science, 2005.

[6] A. Banerjee and D. A. Naumann. Stack-based Access Con-
trol for Secure Information Flow. Journal of Functional
Programming, 15(2):131–177, Mar. 2005. Special Issue on
Language Based Security.

[7] G. Barthe, D. A. Naumann, and T. Rezk. Deriving an Infor-
mation Flow Checker and Certifying Compiler for Java. In
27th IEEE Symposium on Security and Privacy, pages 230–
242, Oakland, CA, USA, May 2006.

[8] G. Barthe and T. Rezk. Non-interference for a JVM-like
Language. In M. Fähndrich, editor, Proceedings of 2005
ACM SIGPLAN International Workshop on Types in Lan-
guages Design and Implementatio (TLDI 2005), pages 103–
112, Long Beach, CA, USA, Jan. 2005. ACM Press.

[9] M. Bartoletti, P. Degano, and G. L. Ferrari. Static Analysis
for Stack Inspection. In Proceedings of International Work-
shop on Concurrency and Coordination, Electronic Notes in
Theoretical Computer Science, volume 54, Amsterdam, The
Netherlands, 2001. Elsevier.

[10] F. Besson, T. Blanc, C. Fournet, and A. D. Gordon. From
Stack Inspection to Access Control: A Security Analysis for
Libraries. In Proceedings of the 17th IEEE Computer Secu-
rity Foundations Workshop (CSFW-17 2004), pages 61–75,
Pacific Grove, CA, USA, June 2004. IEEE Computer Soci-
ety.

[11] M. Bishop and M. Dilger. Checking for Race Conditions
in File Accesses. Computing Systems, 9(2):131–152, Spring
1996.

[12] D. E. Denning. A Lattice Model of Secure Information
Flow. Communications of the ACM, 19(5):236–243, May
1976.

[13] D. E. Denning and P. J. Denning. Certification of Programs
for Secure Information Flow. Communications of the ACM,
20(7):504–513, July 1977.

[14] Eclipse Project, http://www.eclipse.org.
[15] Equinox Java Security Project, http://www.

eclipse.org/equinox/incubator/security/
java2security.html.

[16] J. S. Fenton. Memoryless Subsystems. The Computer Jour-
nal, 17(2):143–147, 1974.

[17] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive
Type Qualifiers. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI 2002), pages 1–12, Berlin, Germany, June
2002.

[18] C. Fournet and A. D. Gordon. Stack Inspection: Theory
and Variants. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2002), pages 307–318, Portland, OR, USA,
Jan. 2002. ACM Press.

14



[19] J. A. Goguen and J. Meseguer. Security Policies and Secu-
rity Models. In Proceedings of the 1982 IEEE Symposium
on Security and Privacy, pages 11–20, Oakland, CA, USA,
May 1982. IEEE Computer Society Press.

[20] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going Beyond the Sandbox: An Overview of the New Se-
curity Architecture in the Java Development Kit 1.2. In
USENIX Symposium on Internet Technologies and Systems,
Monterey, CA, USA, Dec. 1997.

[21] D. Grove and C. Chambers. A Framework for Call Graph
Construction Algorithms. ACM Trans. Program. Lang. Syst.,
23(6):685–746, November 2001.

[22] G. L. Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt.
Automata-based Confidentiality Monitoring. In Proceed-
ings of 11th Annual Asian Computing Science Conference
(ASIAN 2006), Tokio, Japan, Dec. 2006.

[23] C. Hammer, J. Krinke, and G. Snelting. Information Flow
Control for Java Based on Path Conditions in Dependence
Graphs. In Proceedings of IEEE International Symposium
on Secure Software Engineering, Arlington, VA, USA, Mar.
2006.

[24] N. Hardy. The Confused Deputy. ACM SIGOPS Operating
Systems Review, 22(4):36–38, Oct. 1988.

[25] T. P. Jensen, D. L. Métayer, and T. Thorn. Verification of
Control Flow Based Security Properties. In Proceedings of
the 1999 IEEE Symposium on Security and Privacy, pages
89–103, Oakland, CA, USA, May 1999.

[26] G. A. Kildall. A Unified Approach to Global Program Op-
timization. In Proceedings of the 1st Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 194–206, Boston, MA, USA, 1973. ACM
Press.

[27] L. Koved, M. Pistoia, and A. Kershenbaum. Access Rights
Analysis for Java. In Proceedings of the 17th ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 359–372, Seattle,
WA, USA, November 2002. ACM Press.

[28] V. B. Livshits and M. S. Lam. Finding Security Vulnerabil-
ities in Java Applications with Static Analysis. In Proceed-
ings of the 14th USENIX Security Symposium, Baltimore,
MD, USA, July 2005.

[29] A. C. Myers. JFlow: Practical Mostly-static Information
Flow Control. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL 1999), pages 228–241, San Antonio, TX,
USA, Jan. 1999.

[30] D. A. Naumann. Verifying a Secure Information Flow Ana-
lyzer. In J. Hurd and T. Melham, editors, 18th International
Conference on Theorem Proving in Higher Order Logics
TPHOLs 2005, volume 3603 of Lecture Notes in Computer
Science, pages 211–226, Oxford, UK, Aug. 2005. Springer.

[31] J. Newsome and D. X. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation
of Exploits on Commodity Software. In Proceedings of the
12th Network and Distributed System Security Symposium
(NDSS 2005), San Diego, CA, USA, Feb. 2005. IEEE Com-
puter Society.

[32] N. Paul and D. Evans. .NET Security: Lessons Learned
and Missed from Java. In Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC 2004),
pages 272–281, Washington, DC, USA, December 2004.
IEEE Computer Society.

[33] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. In-
terprocedural Analysis for Privileged Code Placement and
Tainted Variable Detection. In Proceedings of the 19th Euro-
pean Conference on Object-Oriented Programming, pages
362–386, Glasgow, Scotland, UK, July 2005. Springer-
Verlag.

[34] F. Pottier, C. Skalka, and S. F. Smith. A Systematic Ap-
proach to Static Access Control. In Proceedings of the 10th
European Symposium on Programming Languages and Sys-
tems, pages 30–45. Springer-Verlag, 2001.

[35] J. H. Saltzer and M. D. Schroeder. The Protection of Infor-
mation in Computer Systems. In Proceedings of the IEEE,
volume 63, pages 1278–1308, Sept. 1975.

[36] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting Format String Vulnerabilities with Type Qualifiers.
In Proceedings of the 10th USENIX Security Symposium,
Washington, DC, USA, Aug. 2001.

[37] G. Snelting, T. Robschink, and J. Krinke. Efficent Path Con-
ditions in Dependence Graphs for Software Safety Analysis.
ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 15(4):410–457, October 2006.

[38] A. Stoughton. Access Flows: A Protection Model which In-
tegrates Access Control and Information Flow. In Proceed-
ings of the 1981 IEEE Symposium on Security and Privacy,
pages 9–18, Oakland, CA, USA, May 1981.

[39] IBM Security Workbench Development Environment for
Java (SWORD4J), http://www.alphaworks.ibm.
com/tech/sword4j.

[40] Úlfar Erlingsson and F. B. Schneider. IRM Enforcement of
Java Stack Inspection. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, pages 246–255, Oak-
land, CA, USA, May 2000. IEEE Computer Society.

[41] D. Volpano, C. Irvine, and G. Smith. A Sound Type System
for Secure Flow Analysis. Journal of Computer Security,
4(2-3):167–187, Jan. 1996.

[42] L. Wall, T. Christiansen, and J. Orwant. Programming Perl.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, third
edition, July 2000.

[43] D. S. Wallach, A. W. Appel, and E. W. Felten. SAFKASI:
A Security Mechanism for Language-based Systems. ACM
Transactions on Software Engineering and Methodology
(TOSEM), 9(4):341–378, 2000.

[44] D. S. Wallach and E. W. Felten. Understanding Java Stack
Inspection. In Proceedings of the 1998 IEEE Symposium
on Security and Privacy, pages 52–63, Oakland, CA, USA,
May 1998.

[45] T. Zhao and J. T. Boyland. Type Annotations to Improve
Stack-Based Access Control. In 18th IEEE Computer Se-
curity Foundations Workshop (CSFW-18 2005), pages 197–
210, Aix-en-Provence, France, June 2005. IEEE Computer
Society.

15


