
Automatically Solving NP-Complete Problems
on aQuantum Computer

Shaohan Hu, Peng Liu, Chun-Fu (Richard) Chen, Marco Pistoia
IBM Research, Yorktown Heights, NY, 10598 USA

shaohan.hu@ibm.com,{liup,chenrich,pistoia}@us.ibm.com

ABSTRACT

In recent years, tremendous efforts from both the industrial and the

academic research communities have been put into bringing forth

quantum computing technologies. With the potential proliferation

of universal quantum computers on the horizon, quantum comput-

ing, however, is still severely grounded by numerous grave barriers,

which lead to its low accessibility and practicality. For example,

the vastly different underlying computing models, combined with

the steep background knowledge requirements, makes it extremely

difficult, if possible at all, for most software engineering researchers

and practitioners to even begin to design or implement quantum

algorithms or softwares in practice. To overcome this problem, we,

in this paper, propose a design that largely circumvents said accessi-

bility and practicality barriers, by providing an end-to-end quantum

computing framework for solving NP-complete problems via reduc-

tion. We fully implemented a toolkit under our design framework.

With this toolkit, software engineering researchers and practition-

ers would be able to enjoy the speedup and scalability benefits of

universal quantum computers without necessarily having to have

prior knowledge on quantum computing.

KEYWORDS

Universal quantum computing, Grover’s algorithm, NP-Complete,

Reduction, Satisfiability

ACM Reference Format:

Shaohan Hu, Peng Liu, Chun-Fu (Richard) Chen, Marco Pistoia. 2018. Au-

tomatically Solving NP-Complete Problems on a Quantum Computer. In

ICSE ’18 Companion: 40th International Conference on Software Engineering

Companion, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY,

USA, 2 pages. https://doi.org/10.1145/3183440.3194959

1 INTRODUCTION

Having dictated classical computing technology advances for

decades, todayMoore’s Law has been dragged by the limit of physics

to a crawl [1]. Thus, in recent years, heavy interests and invest-

ments from the industry as well as the academic community are

poured into bringing quantum computers into reality [2, 3]. How-

ever, with half a century of research efforts on theoretical quantum

computing, there has only been a small set of quantum algorithms

ever discovered. And from a software point of view, to be able to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194959

even understand a simple piece of quantum program, let alone de-

sign and develop sophisticated tool stacks, requires a fair amount

of background knowledge on quantum computing systems, which

in general cannot be assumed for most software engineering re-

searchers and practitioners.

Towards overcoming this accessibility and practicality gap sur-

rounding quantum computing, we propose an end-to-end quantum

computing framework for solving NP-complete problems. The focus

on NP-complete problems comes from the simple fact that they

are computationally hard. Compared to them, easier problems can

already be handled with ease by classical computers. It is there-

fore more meaningful that the potential speedup brought about

by quantum computers be used for solving the harder problems.

Fig. 1 depicts our quantum NP-complete solution framework. As

shown, one key feature is that our solution exploits reduction [4, 5],

so that all NP-complete problems can potentially be solved by a

core quantum solver that is directed towards a single NP-complete

problem—all other NP-complete problems can be solved by us-

ing a reduction wrapper around the core solver. By designing our

framework in this way, we circumvent the extreme difficulty of

coming up with quantum models/encodings for a whole array of

different NP-complete problems—finding one potentially gives us

immediate quantum solutions for all. In particular, in building our

initial prototype system, we picked Satisfiability, or SAT as the core

problem, and fully implemented a streamlined Grover’s search [6]

algorithm-based quantum solution toolkit.

 Input I Output OO

Polynomial Reduction

 Input I' Output O'OQuantum Solver

Figure 1: Quantum NP-Complete Solution Pipeline

2 FRAMEWORK OVERVIEW

We now discuss how to construct a SAT solver for universal quan-

tum computers using Grover’s search algorithm.

A SAT problem is a boolean feasibility test on logic conjunctive

normal forms (CNFs), or ANDs of ORs. Our plan is to basically

use Grover’s algorithm to search for the satisfactory variable as-

signment, for which a brute force search on classical computers

takes Ω(2n) lookups for an input problem with n variables, whereas

our Grover solver should find an assignment under O(2
n

2). Since

Grover’s algorithm consists of the two steps, marking and ampli-

fication, we will need to implement them for SAT on a universal

quantum computer.

The marking operation Uf |x,y〉 = |x, f (x) ⊕ y〉 is completely
determined by the boolean oracle function f , which takes as input
a single quantum state, and spits out whether or not the state is a

258

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Shaohan Hu, Peng Liu, Chun-Fu (Richard) Chen, Marco Pistoia

search target. This fits nicely with our intended logic satisfiability

setting—actually, we can just make f the CNF expression itself, and
each of the 2n possible states naturally corresponds to a particular

assignment to the n boolean variables.
Regarding how to implement the involved logical operators on a

quantum computer, a NOT ¬ operator would just flip between the

|0〉 and |1〉 states, or more generally, the α |0〉+β |1〉 and β |0〉+α |1〉
states to keep in mind quantum superposition. This is exactly what

the quantum Pauli-X gate does. For the OR ∨ operator, since De

Morgan’s law tells us that v1 ∨ v2 ⇐⇒ ¬(¬v1 ∧ ¬v2), we can
simply transform all ∨ operations into ∧ operations with the help

of ¬, which we already figured out how to do quantumly.

In essence, then, we need a quantum gate capable of carrying

out the logic AND ∧ operation. A 3-qubit quantum Toffoli (or CCX)

gate [7] can be used to carry out an AND for 2 qubits, if we make

the first two qubits |q0〉 and |q1〉 hold the problem variables, and

introduce an ancillary |q2〉 = |0〉 as the last qubit. In order to handle
general CNF expressions, which potentially has a large number

of clauses that need to be ANDed together, we extend CCX to

achieve CNX which would then be able to handle the ANDing of

an arbitrary number of variables, by piecing together multiple CCX

gates and introducing additional ancillary qubits, where each single

CCX brings a new variable into the collective AND, and the ancillas

help hold intermediate states.

The amplitude amplification operation for Grover’s algorithm is

equivalent to the matrixMn = I2n×2n − 2A2n×2n , which, on a quan-
tum computer, can be implemented as, and mathematically proven

to be Mn = HnXnZnXnHn , where we have the corresponding n-
qubit Hadamard [8] transformation Hn = ⊗

n
i=1H , Pauli-X transfor-

mation Xn = ⊗
n
i=1X , and Zn = [(⊗

n−1
i=1 I) ⊗ H]CNXn [(⊗

n−1
i=1 I) ⊗ H].

3 EVALUATION

We fully implemented an prototype of our Quantum NPC Solver in

python. In this section we demonstrate its usage and capabilities

with a couple of example runs.

Listing 1 shows the input of a small 3-SAT problem instance. Line

1 indicates that this is a CNF problem, containing 2 variables and 3

clauses. Lines 2 through 4, where the 0’s denote line terminations,

specify the 3 clauses: (v1 ∨v2), (v1 ∨¬v2), and (¬v1 ∨v2), the AND
of which is the complete 3-SAT formulation. It can be easily worked

out that the unique satisfying solution is v1 = v2 = True.

1 p cn f 2 3
2 1 2 0
3 1 −2 0
4 −1 2 0

Listing 1: A Small 3-SAT Problem Instance

With this input, the automatically generated quantum circuit

is depicted in Fig. 2. Please note that, we only carried out a single

round of marking and amplification transformations, for the pur-

pose of better demonstrating the probability nature of quantum

computing. Fig. 3 shows the execution results from IBM Quantum

Platform. As can be clearly seen, the most prominent measurement

outcome state is |11〉, which corresponds to our expected solution

v1 = v2 = True to our input 3-SAT problem.

var[0]

var[1]

var[2]

conj[0]

conj[1]

conj[2]

anci[0]

H

H

X

X

X

X

X X

X

X X X

X

X X

X

X

H

H

X

X

X

H H X

X

X

H

H

H

M

M

Figure 2: Generated Quantum Circuit for the 3-SAT

State

Pr
ob
ab
ili
ty

0.3
0.2
0.1
0

0.4

0.9
0.8
0.7
0.6
0.5

11 00 10 01

Figure 3: Execution Measurements Results for the 3-SAT

Next, we show an example run on a small 3-Coloring problem

input, as shown in Listing 2, where Line 1 specifies that this problem

formulation file lists the edges for the graph containing 3 nodes

and 3 edges. Line 2 through 4 list the node pairs for each of the 3

edges.

1 p edge 3 3
2 e 1 2
3 e 1 3
4 e 2 3

Listing 2: An Example 3-Coloring Problem Instance

The auto-generated quantum circuit is depicted in Fig. 4. A total

of 50 qubits (9 variables and 41 ancillas) are involved in this quantum

circuit, where the current backend IBM quantum processor we use

is only equipped with 16 qubits, and is thus not able to execute our

generated quantum code, yet.

var[0]

var[1]

var[2]

var[3]

var[4]

var[5]

var[6]

var[7]

var[8]

var[9]

conj[0]

conj[1]

conj[2]

conj[3]

conj[4]

conj[5]

conj[6]

conj[7]

conj[8]

conj[9]

conj[10]

conj[11]

conj[12]

conj[13]

conj[14]

conj[15]

conj[16]

conj[17]

conj[18]

conj[19]

conj[20]

anci[0]

anci[1]

anci[2]

anci[3]

anci[4]

anci[5]

anci[6]

anci[7]

anci[8]

anci[9]

anci[10]

anci[11]

anci[12]

anci[13]

anci[14]

anci[15]

anci[16]

anci[17]

anci[18]

H

H

H

H

H

H

H

H

H

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

H

H

H

H

H

H

H

H

H

X

X

X

X

X

X

X

X

X

X

H H X

X

X

X

X

X

X

X

X

X

H

H

H

H

H

H

H

H

H

H

M

M

M

M

M

M

M

M

M

Figure 4: Generated Quantum Circuit for the 3-Coloring Problem

REFERENCES
[1] Suhas Kumar. 2015. Fundamental Limits to Moore’s Law. arXiv preprint

arXiv:1511.05956 (2015).
[2] IBM. 2018. IBM Q. https://www.research.ibm.com/ibm-q/. (2018). Accessed:

2018-01-20.
[3] Davide Castelvecchi. 2017. Quantum computers ready to leap out of the lab in

2017. Nature 541 (2017), 9–10.
[4] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of computing. ACM,
151–158.

[5] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity
of computer computations. Springer, 85–103.

[6] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
ACM, 212–219.

[7] Tommaso Toffoli. 1980. Reversible computing. Automata, Languages and Pro-
gramming (1980), 632–644.

[8] Noson S Yanofsky andMirco AMannucci. 2008. Quantum computing for computer
scientists. Vol. 20. Cambridge University Press Cambridge.

259

