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In this paper we survey static analysis methods for identifying security vulnerabilities in

software systems. We cover three areas that have been associated with sources of

security vulnerabilities: access-control, information-flow, and application-program-

ming-interface conformance. Because access control mechanisms fall into two major

categories, stack-based access control and role-based access control, we discuss static

analysis techniques for these two areas of access control separately. Similarly, security

violations pertaining to information flow consist of integrity violations and confiden-

tiality violations, and consequently, our discussion of static analysis techniques for

information-flow vulnerabilities includes these two topics. For each type of security

vulnerability we present our findings in two parts: in the first part we describe recent

research results, and in the second part we illustrate implementation techniques by

describing selected static analysis algorithms.

INTRODUCTION

Security of software systems touches on a vast and

complex array of issues, making it difficult and

expensive to implement a comprehensive security

solution. In practice, software development organi-

zations attempt to adhere to a variety of known

security principles
1

and security guidelines
2,3

that

facilitate the design and implementation of secure

software systems.

Ensuring compliance with security guidelines can be

especially challenging. These guidelines are often

complex, and information technology (IT) profes-

sionals are prone to making mistakes, especially

when dealing with large programs comprising

multiple components, whose security properties

may differ. Such is the case, for example, when

assembling a Web application consisting of compo-

nents with differing access-control requirements and

levels of trust. Similarly, the use of a third-party

component whose application-programming inter-

face (API) is not properly documented presents a
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security risk. Although organizations could conduct

manual code inspections to identify security prob-

lems, such reviews are time consuming and

expensive, and their coverage uncertain.

To address this problem, the research community

has proposed automatic analysis techniques for

identifying security vulnerabilities in code. Such

techniques may employ dynamic analysis, static

analysis, or both. Dynamic analysis entails execut-

ing the program and inferring properties from its

observed behavior. Although dynamic analysis may

expose bugs, it cannot ensure complete coverage of

the target program and thus ensure compliance with

security guidelines. Instead, developers have

adopted an approach based on sound analysis,

which can provably identify all possible violations

of specific security guidelines.

In this paper we survey static analysis techniques

that can be used to automatically detect security

vulnerabilities in software systems. These tech-

niques cover three areas that have been associated

with sources of security vulnerabilities
4–7

:

1. Access control—The mechanisms for access con-

trol restrict access to security-sensitive resources

based on a user’s identity and membership in

predefined groups. Ensuring that an access

control policy enforces the required level of

security can be difficult, especially for systems

with myriad components of different trust levels

with access to a multitude of restricted resources.

If an access control policy does not grant

sufficient permissions to users, runtime authori-

zation failures may result. Conversely, if an

access control policy grants users unnecessary

permissions, the policy may expose a system to

security attacks.

2. Information flow—A secure information flow

ensures that information propagates throughout

the execution environment without violating two

classes of security violations:

(a) Integrity violations arise when untrusted

information flows into a trusted execution

environment without having been properly

validated. A malicious user could compro-

mise a system by exploiting an integrity

violation.

(b) Confidentiality violations arise when confi-

dential information flows from a restricted

execution environment to a public one

without having been properly declassified.

For example, a confidentiality violation

arises if trusted code exposes a crypto-

graphic private key to untrusted code.

3. API conformance—Web applications often rely on

libraries and third-party APIs to provide security-

sensitive services. As an example, many appli-

cations rely heavily on cryptography libraries to

protect confidentiality, prevent integrity viola-

tions, and distinguish between trusted and

untrusted entities. Incorrect usage of crypto-

graphic functions may lead to insecure storage of

security-sensitive information and cause viola-

tions of integrity and confidentiality policies.

The range of vulnerabilities that can be addressed

through the static analysis techniques surveyed here

can be illustrated by considering the top 10 security

violations in today’s Web applications according to

the Open Web Application Security Project

(OWASP).
4

These top 10 security violations are:

(A1) unvalidated input (information passed through

Web requests is not validated before being used by a

Web application), (A2) broken access control

(access control policies are not properly enforced),

(A3) broken authentication and session manage-

ment (account credentials and session tokens are

not properly protected), (A4) cross-site scripting

(the Web application is used as a vehicle for an

attack against a local machine), (A5) buffer over-

flow, (A6) injection flaws (malicious commands

embedded in parameters passed by Web applica-

tions), (A7) improper error handling, (A8) insecure

storage (such as that caused by improper coding of

cryptographic functions), (A9) application denial of

service, and (A10) insecure configuration manage-

ment. Violations of types A2 and A3, and in some

cases A9, fall under access control vulnerabilities.

Violations of type A1, A4, and A6 can be viewed as

exploiting information flow vulnerabilities. Viola-

tions of type A8 can be addressed with measures for

ensuring API conformance. Security vulnerabilities

of type A5, A7, and A10 are not addressed in our

survey.

The rest of this paper is structured as follows. In the

next section we discuss access control systems by

describing the two major approaches to access

control: stack-based access control (SBAC) and role-

based access control (RBAC). The next four sections
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cover SBAC vulnerabilities, RBAC vulnerabilities,

information flow vulnerabilities, and API confor-

mance vulnerabilities. Each one of these sections

consists of two parts. In the first part we survey

research results associated with the topic, and in the

second part we discuss one or more specific static

analysis algorithms that illustrate the techniques

used to implement the static analysis method. The

last section contains a short summary and final

comments.

ACCESS-CONTROL SYSTEMS
Software systems must enforce access control

policies for security-sensitive resources and opera-

tions. Among the many access-control mechanisms

available, SBAC and RBAC have recently gained in

popularity and have been adopted for use in both

the Java** and .NET Common Language Runtime

(CLR) platforms. In this section we describe the

basics of SBAC and RBAC and the associated

security challenges.

SBAC systems
SBAC was introduced in 1997

8
to enforce access

control in multi-component systems. In an SBAC

system, when a program attempts to access a

restricted resource, the runtime system checks that

all callers currently on the thread’s stack satisfy a set

of permission requirements. SBAC was designed to

prevent untrusted code from gaining access to

restricted resources by invoking (or being invoked

by) more trusted code.

Many SBAC systems grant permissions to code

components declaratively in a policy database. For

example, in Java Standard Edition (Java SE)—

formerly known as Java 2, Standard Edition

(J2SE**)—an administrator can grant a

FilePermission to a Java archive (JAR) file, and all

the classes in that JAR file will hold that

FilePermission at runtime.
9

Each permission

guards access to a particular resource or resource set

and may specify a particular access mode. For

example, a FilePermission may specify the re-

source as a file or a set of files and an access mode

as any combination of read, write, delete, and

execute.

When a Java library method attempts to access a

restricted resource, an underlying SecurityManager

calls the AccessController.checkPermission ser-

vice, passing a Permission parameter p representing

the access being attempted. The checkPermission

function traverses the stack of execution backward,

verifying that all calling methods currently on the

call stack are authorized to access the resource

guarded by p.

As an example, the createSocket method in the

Library Java class of Figure 1 opens a network

connection on behalf of its client, and on doing so,

records the operation in a log file. Both the

operations of opening a network connection and

writing to a file are security sensitive. Therefore, the

client invoking createSocket must hold the

SocketPermission to open a network connection

and the FilePermission to write to the file system.

Configuring a SBAC security policy can be compli-

cated because permission requirements depend on

the dynamic program behavior of various compo-

nents in various contexts. Typically, practitioners

Figure 1
Source code of Library Java class

import java.io.*;
import java.net.*;
public class Library {
      private static final String logFileName = "log.txt";
      public static Socket createSocket(String host, int port)
                  throws UnknownHostException, IOException {
            Socket socket = new Socket(host, port);
            FileOutputStream fos = new FileOutputStream(logFileName);
            PrintStream ps = new PrintStream(fos, true);
            ps.print("Socket " + host + ":" + port);
            return socket;
      }
}
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determine the policy configuration through testing,

iteratively adding required permissions until tests

pass without security exceptions. However, without

complete coverage from the test suite, some paths of

execution may remain undiscovered until runtime,

exposing an application to runtime authorization

failures.

The code of Figure 1 illustrates an interesting

problem that often arises in SBAC systems. A client

program invoking createSocket may not be aware

that the underlying library will log the network

operation to a file. Yet, the program of Figure 1 will

not work unless client code invoking createSocket

on classLibrary holds the FilePermission re-

quired to record the network operation to the log

file.

Granting client code the FilePermission to log the

network operation would constitute a violation of

the Principle of Least Privilege,
1

which dictates that

any program or user should not be granted more

permissions than absolutely necessary. In this

example, the library should control the log file;

malicious clients could misuse a FilePermission to

log false data or to erase the contents of the log file.

Fortunately, SBAC systems allow portions of library

code to be marked as privilege asserting. During

stack inspection, the runtime system must enforce

that privilege-asserting library code holds the

necessary permission, but callers of privilege-as-

serting code need not. In Java, library code can be

made privilege asserting by implementing either the

PrivilegedAction or PrivilegedExceptionAction

interface. Class AssertingLibrary in Figure 2 is a

modified version of the class Library of Figure 1,

with the code performing the file-system operation

wrapped in an asserting block.

Although privilege-asserting code is necessary to

enforce security policies, unintentional misuse of

privilege-asserting mechanisms can introduce secu-

rity holes. Before making a block b of library code

privilege-asserting, developers should verify that:

1. The privilege is necessary; b in fact performs a

security-sensitive operation.

2. The privilege is not redundant; b does not

(directly or indirectly) invoke another block of

privilege-asserting code before performing a

security-sensitive operation.

3. All security-insensitive code that can be moved

out of privilege-asserting code is moved,

Figure 2
Source code of AssertingLibrary Java class

import java.io.*;
import java.net.*;
import java.security.*;
public class AssertingLibrary {
      private static final String logFileName = "log.txt";
      public static Socket createSocket(String host, int port)
                  throws UnknownHostException, IOException, 
                              PrivilegedActionException {
            Socket socket = new Socket(host, port);
            PrivWriteOp op = new PrivWriteOp(logFileName);
            FileOutputStream fos = (FileOutputStream)
            AccessController.doPrivileged(op);
            PrintStream ps = new PrintStream(fos, true);
            ps.print("Socket " + host + ":" + port);
            return socket;
      }
}
class PrivWriteOp implements PrivilegedExceptionAction {
      private String logFileName;
      PrivWriteOp (String logFileName) {
            this.logFileName = logFileName;
      }
      public Object run() throws IOException {
            return new FileOutputStream(logFileName);
      }
}
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to avoid future complications from additional

security requirements for such code.

4. Block b does not contain more than one security-

sensitive operation; conversely, it could shield

client code from intended permission require-

ments.

5. Block b must respect all integrity and confiden-

tiality requirements concomitant with the secu-

rity-sensitive operation.

Deciding which blocks of library code should be

made privilege asserting or verifying that existing

privilege-asserting code does not violate the pre-

ceding security guidelines may be very difficult

without an automated tool.
3

RBAC systems

RBAC was introduced in 1992
10

as a means to

restrict access to the operations performed on a

system. RBAC has subsequently been adopted by

several popular software platforms, such as Java

Platform, Enterprise Edition (Java EE)—formerly

known as Java 2, Enterprise Edition (J2EE**)—and

CLR.
11,12

In RBAC, a permission represents the right

to perform a restricted operation. A role represents a

set of permissions that can be granted to users and

groups of computer systems. RBAC permissions

represent security-sensitive operations, as opposed

to security-sensitive data accessed by the system.

When a user attempts a restricted operation, the

user must possess a role that includes the necessary

permission.

Many systems provide both RBAC and SBAC,
11,12

so

that system administrators can restrict access to

both operations and system resources at the same

time. Security compliance management on such

systems must account for both models in order to

configure access-control policies faithfully.

Several challenges arise when configuring an RBAC

security policy:

1. Identifying access control requirements based

on operations may be more difficult than

identifying requirements based on resources;

for example, it is intuitive to recognize field

socialSecurityNumber as security sensitive, but

there is no intuitive way to recognize what

resources are accessed by a method called

perform.

2. In order to deny a role q access to some data, an

RBAC policy must deny q access to all the

operations that directly or indirectly access that

data; for example, given a StudentBean enter-

prise bean, it is reasonable to impose that the

method setGrade be accessible to users who

have been granted the role of Professor and

denied to users with role Student. It is also

reasonable to allow a user with the Student role

to invoke method setProfile, because a student

should have the right to modify his or her own

profile. However, without having access to the

bean’s source code, shown in Figure 3, a system

administrator may not realize that granting the

role of Student access to setProfile allows

students to modify their own grades. This shows

that even though RBAC allows configuring a

security policy based on operations, it may still

be desirable to map those operations to the data

they access and to verify that the intended data-

based security policy does not conflict with the

operation-based security policy that has been

configured.
13,14

Figure 3
Source code of the StudentBean EJB class

public class StudentBean implements SessionBean {
    private String name, address;
    private Map grades = new HashMap();
    public void setGrade(String c, Character g) {
        grades.put(c, g);
    }
    public void setProfile(String n, String a, Map m) {
        this.name = n;
        this.address = a;
        this.grades = m;
    }
}
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3. To invoke a particular application entry point e, a

user must possess all the roles necessary to

perform all the operations transitively triggered

by e; for example, in the scenario of Figure 4,

user bob has been granted the role of Employee,

necessary to invoke the application entry point,

m
0
. In spite of this, the execution of the

application will fail because m
0

indirectly triggers

the execution of m
5
, which requires the role of

Manager, a role that was not granted to bob.

4. No unnecessary roles should be granted to any

user; for example, the role of Developer is not

needed by user bob to execute the application of

Figure 4. Granting bob such a role is a violation of

the Principle of Least Privilege.

RBAC configuration is further complicated by

principal-delegation policies, which dynamically

overwrite the roles granted to a user, similar to

setuid in UNIX**.
15

For example in Figure 4, the

component of m
1

has a run-as principal-delegation

policy that sets the role of the user to Manager, and

this role is insufficient to execute m
7
. A system

administrator must also keep in mind that in certain

platforms, such as Java EE, RBAC is only enforced

when a component is entered; intracomponent

access control is not enforced. For example, the

invocation of m
7

in the scenario of Figure 4 causes

an authorization failure, but that of m
6

does not.

ANALYSIS OF SBAC SYSTEMS

In this section we discuss program-analysis tech-

niques for problem detection and policy validation

in SBAC systems, and then focus on a recent

algorithm that can be used to infer the SBAC policy

of a program, validate an existing policy, and

identify candidate code locations for designation as

privilege asserting.

Analysis techniques for SBAC systems

Traditionally, software security has been enforced at

the operating-system level. Because operating sys-

tems have increased in both complexity and size, it

has become increasingly difficult to handle security

at the operating-system level. Additionally, the

operating-system low-level security policies do not

lend themselves to application-level access control.

The purpose of language-based security
16

is to

transfer application-level security-policy enforce-

ment to the programming languages used to

implement the applications. To achieve this result,

language-based security adopts program-rewriting

and program-analysis techniques. Program analysis

can be used to identify portions of code that do not

adhere to the security measures supported by the

underlying language. Next, through program re-

writing, one can replace those unsecure portions of

code with code that complies with the supported

security features. A popular language-based security

Figure 4
A role-based access control scenario

User: bob

Roles Granted: 
Employee, Developer

Role Required: 
Employee Role Required: 

Employee
run-as: Manager

Role Required: 
Manager 

Role Required: 
Employee

Role Required: 
Manager

Role Required: 
Employee

Component

Intercomponent call
Intracomponent call

m4 m5m3

m6
m7

m0

m2m1
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paradigm is to use type systems. Rather than

requiring the end user to be responsible for security-

policy enforcement, type systems transfer this

responsibility to the code provider. A program must

be written in compliance with the type system, and

the end user just needs to type-check the program to

ensure that it can be executed safely. Wallach

et al.
17

present an approach called Security Archi-

tecture Formerly Known as Stack Inspection

(SAFKASI). The SAFKASI implementation uses the

calculus of Security-Passing Style (SPS) to enforce a

form of access control equivalent to traditional stack

inspection. They present a formalization of stack

introspection, which examines authorization based

on the principals currently active in a thread stack at

runtime (security state). In particular, an SPS is an

authorization optimization technique that encodes

the security state of an application while the

application is executing.
18

Each method is modified

so that it passes a security token as part of each

invocation. The token represents an encoding of the

security state at each stack frame, as well as the

result of any authorization test encountered. By

running the application and encoding the security

state, the SPS explores subgraphs of the comparable

invocation graph and discovers the associated

security states and authorizations. The goal of this

work is to optimize authorization performance.

Rather than maintaining the security and code-

execution subsystems separately, with distinct

semantics and different implementations of push-

down stacks, the key intuition behind the SPS

calculus is to add the security context as an

additional, implicit argument to every method. With

SPS, SBAC for a program is achieved by rewriting

the program’s bytecode before it is loaded, without

any need for changing the Java virtual machine or

bytecode semantics. Pottier, Skalka, and Smith
19

extend and formalize the SPS calculus via type

theory using a k-calculus, called k
sec

.

Jensen et al.
20

focus on proving that code is secure

with respect to a global security policy. Their model

uses operational semantics to prove the properties,

using a two-level temporal logic, and shows how to

detect redundant authorization tests.

Bartoletti et al. are interested in optimizing the

performance of runtime authorization testing by

eliminating redundant tests and relocating others as

needed.
21

The reported results apply operational

semantics to model the runtime stack. Similarly,

Banerjee and Naumann
22

apply denotational se-

mantics to show the equivalence of eager and lazy

semantics for stack inspection, provide a static

analysis of safety (the absence of security errors),

and identify transformations that can remove

unnecessary authorization tests. A limitation of this

approach is that the analyses are restricted to a

single thread and require the whole program;

incomplete-program analyses are not supported.

Rather than analyzing security policies as embodied

by existing code, Erlingsson and Schneider
23

de-

scribe a system that inlines reference monitors into

the code to enforce specific security policies. The

objective is to define a security policy and then

inject authorization points into the code. This

approach can reduce or eliminate redundant autho-

rization tests.

The aforementioned works are specifically designed

for Java SE authorization problems and assume that

call-graph-construction algorithms are available to

translate the theoretical approach into a practical

implementation. However, many of the well-known

call-graph-construction and data-flow algorithms
24

do not correctly model Java 2, Enterprise Edition

(Java EE) cross-component calls and are too

conservative to correctly identify authorization

requirements.

Both the the Java and .NET CLR platforms support

subject-based authentication and authorization.

Java Authentication and Authorization Service

(JAAS) was introduced as an extension to the Java 2

platform in 1999
25

and became an integral part of

the core language starting with Version 1.4. There is

little work on static analysis of subject-based

authorization, particularly with regard to subject-

granted rights analysis.

The MARCO algorithm

In this section, we review static analysis algorithms

based on the Mandatory Access Rights Certification

of Objects (MARCO) algorithm.
26,27

The MARCO

algorithm has been implemented and released

as part of the IBM Security Workbench Develop-

ment for Java (SWORD4J).
28

The Java SBAC

architecture mandates that, at the point where

checkPermission is invoked with a Permission

parameter p, all the code on the execution thread’s

stack be granted the authorization represented by

p. MARCO computes permission requirements by
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modeling the stack inspection mechanism on a

computed call graph G ¼ (N, E), representing the

execution of the program. For each call graph node

n corresponding to a checkPermission call, MAR-

CO identifies a set of abstract Permission objects

that may flow to n as a parameter. The tool solves

a data-flow problem, propagating sets of

Permission abstract objects backward in G, until a

fixed point is reached.
29

In Java, permission requirements propagated on the

stack by a call to doPrivileged do not propagate

beyond the predecessors of the doPrivileged node

itself. MARCO handles this precisely by killing data-

flow propagation of upwardly exposed permissions

at doPrivileged nodes, and computing permission

requirements for doPrivileged predecessors as a

post-pass to the fixed-point computation.

When the data-flow algorithm just described termi-

nates, each node n 2 N is mapped to a set P(n) of

Permission abstract objects. P(n) over-approxi-

mates the permissions required to execute the

method modeled by n.

MARCO can help detect which code could be made

privilege asserting, while minimizing the risks of

violating the Principle of Least Privilege. A static

analysis of Java’s class-loading behavior can iden-

tify intercomponent calls. If e ¼ (m, n) is an

intercomponent edge and P(n) 6¼ Ø, then the call

represented by e can potentially lead to a security-

sensitive resource access. Such a call is a candidate

for a privilege-asserting block.

For example, e may be the edge resulting from

calling the constructor of FileOutputStream from

method createSocket in Figure 1. Figure 2 shows

how to wrap the FileOutputStream constructor call

into a privilege-asserting block.

As described, MARCO’s analysis of permissions on

intercomponent edges suffices to determine com-

ponent code that is a candidate for privilege

assertion and to identify the associated permissions.

Additionally, the tool can recommend privilege-

asserting code locations that lie closest to the

authorization checks. This information can help

minimize the risk of introducing unnecessary access

privileges. Code changes during development or

maintenance can create unnecessary or redundant

doPrivileged calls. For example, after code modi-

fications, a call to doPrivileged that was originally

necessary may no longer trigger an authorization

check. A redundant doPrivileged call may result

from poor code design or during component

integration, where a call to doPrivileged becomes

redundant because other doPrivileged calls now

dominate the authorization check. MARCO’s algo-

rithm can identify unnecessary or redundant calls to

doPrivileged by simply detecting any

doPrivileged node d such that P(d) ¼ Ø.

If code does not require authorizations, it is poor

security practice to include it in privilege-asserting

code.
3

For example, the following instruction in the

run method of Figure 5 appears in a privilege-

asserting block even though it does not access

restricted resources:

System:out:printlnð"User : " þ userName

þ "; Host : " þ host þ "; Port : " þ portÞ;

Such code should be moved to a non-privilege-

asserting block of code even though, in this case,

P(d) 6¼ Ø. MARCO can statically detect statements

that have unnecessarily been inserted into otherwise

valid privilege-asserting blocks. Specifically, let d be

a doPrivileged node and r its PrivilegedAction or

PrivilegedExceptionAction run successor. If

P(r) 6¼ Ø and r has a successor node n such that

P(n) ¼ Ø, then the method invocation represented

Figure 5
Java method performing an SQL query

public void submitQuery(String userName, String password) {
      String query =
            "SELECT id FROM users WHERE name = '" + userName +
            "' AND password = '" + password + "'";
      execute(query);
}
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by n can be safely moved to non-privilege-asserting

code.

The algorithm as described so far does not account

for information-flow violations that can arise from

privilege-asserting code. For example, both the

Socket and the FileOutputStream constructor calls

in Figure 1 would be reported as potential candi-

dates for becoming privilege asserting, even though

wrapping the Socket constructor call in a privilege-

asserting block would constitute both an integrity

and confidentiality violation. Privilege-asserting

code should adhere to the integrity and confidenti-

ality requirements.

Clearly, the precision of these static security

analyses depends on the precision of the underlying

static analyzer. The MARCO tool is based on an a

context-sensitive static analyzer that distinguishes

invocations of the same method based on their

calling contexts, consisting of the allocation sites of

receivers and parameters. This context-sensitivity

policy, unfortunately, does not always suffice to

disambiguate different calls to the same method (for

example, if that method is static and takes no

parameters). This can lead to overly conservative

results. Work is underway on a set of open research

problems concerning more precise, yet scalable

algorithms to increase precision of stack inspection

analysis.

In addition to static analysis, permission and

privilege-asserting code requirements for a library

can also be identified using dynamic analysis.

Typically, the developer tests the library code with

sample client code, iteratively determining sufficient

permissions to execute the test cases. Usually, the

client code is granted only a limited number of

permissions, while the library is granted sufficient

permissions, such as AllPermission. Next, it is

necessary to take note of all the

SecurityExceptions generated when running the

test cases, and to distinguish between two categories

of SecurityExceptions: (1) those due to the client

code’s attempting to access some restricted re-

sources through the library without adequate

authorizations, and (2) those due to the library’s

attempting to access some restricted resources on its

own without using privilege-asserting code. Elimi-

nating a SecurityException of type 2 requires

inspecting the library source code, identifying which

portion accesses the protected resource, and making

that portion of code privilege asserting. A

SecurityException of type 1 can be eliminated by

requiring that client code hold necessary permis-

sions, but this operation must be performed

cautiously because granting permissions to the

client could hide SecurityExceptions of type 2.

Manually performing this process is difficult, te-

dious, and error prone. After modifying the library

code or the client security policy, the developer must

rerun the test cases. This process must be repeated,

possibly many times, until no more authorization

failures occur. Additionally, privilege-asserting re-

quirements in the library code may remain undis-

covered during testing due to insufficient test

coverage, which makes production code potentially

unstable.

ANALYSIS OF RBAC SYSTEMS

This section presents a survey of program analysis

algorithms for RBAC systems and then focuses on

two recent algorithms that have been designed and

developed to validate RBAC policies.

Analysis techniques for RBAC systems

The concept of RBAC was introduced for the first

time by Ferraiolo and Kuhn,
10

who identified the

need for security policies based on the roles that a

user has in an organization. Work on building and

analyzing models and implementations for RBAC

has concentrated on complex architectures.
30

Sur-

prisingly, few approaches for analyzing RBAC

mechanisms have been suggested. Schaad and

Moffett
31

used the Alloy specification language
32

for

modeling the RBAC96 access model and the Alloy

Constraint Analyzer (Alcoa)
33

for checking desirable

properties of such models, such as separation of

duties assigned to roles.

Extensible Markup Language (XML) documents are

often used by Web applications. Several mecha-

nisms and frameworks for specification and en-

forcement of access policies for XML documents

have been proposed.
34,35

Such mechanisms are

flexible in the sense that they prohibit or allow

access to specific individual elements in XML

documents. Recently, Murata, Tozawa, Kudo, and

Satoshi
36

proposed a static analysis approach based

on finite state automata that alleviates the burden of

enforcement of such specifications at runtime.

Another positive side effect of this work is faster

execution of queries over XML documents in some

situations.
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In the area of Web applications, a number of testing

and static analysis techniques have been proposed,

but they have concentrated primarily on the

problem of control and information flow between

static and dynamic HyperText Markup Language

(HTML) pages used by Web applications. For

example, Ricca and Tonella
37

introduced a Unified

Modeling Language** (UML**) model for Web

applications that is useful for structural testing.

However, this model concentrates on links between

Web pages and interactive features of Web appli-

cations, such as HTML forms, and does not provide

support for distributed object components.

Clarke et al.
38

address the confinement problem of

Enterprise JavaBeans** (EJB**) objects. This prob-

lem arises in situations where direct references to

EJB objects or other server-side distributed objects

are returned to clients. Such references allow clients

to use EJB objects directly, without going through

the indirection of EJB interface objects. As a result,

the EJB RBAC model can be circumvented. The

work by Clarke et al. identifies the possible ways in

which confinement of EJB objects can be breached,

and defines simple programming conventions that,

if observed, support inexpensive static analysis able

to detect confinement breaches or verify that no

confinement breach is possible for a given set of

enterprise beans.

The ESPE algorithm

RBAC systems present similar challenges to those

facing SBAC systems. Specifically, for RBAC, it is

desirable to identify an application’s role require-

ments, evaluate an existing RBAC policy to detect if

it is too permissive or too restrictive, and detect if

the RBAC policy restricts access on data

consistently.

RBAC policies restrict access to operations (or

methods) rather than data or resources. In order to

invoke a particular entry point to an application, a

user needs to be granted all the roles required to

invoke all the methods transitively invoked starting

at that entry point.

The Enterprise Security Policy Evaluation (ESPE)

algorithm by Pistoia et al.
26,39

casts the problem of

evaluating an RBAC policy to a data-flow problem.

The execution of a Java EE application protected

with a set of roles R is modeled as a call graph G ¼
(N, E). The goal is to map each node n 2 N to v(n), a

propositional logic statement in conjunctive normal

form, corresponding to the roles necessary to invoke

the method m represented by n at runtime. The

statement v(n) can be represented as an element of

P(P (R)), where the P operator maps a set to its

powerset. Specifically, if m has been restricted with

roles r
1
, r

2
, . . ., r

k
2 R, initially v(n) :¼ ffr

1
, r

2
, . . .,

r
k
gg, modeling the property that a user u initiating

any execution traversing m has to show possession

of at least one role in the set fr
1
, r

2
, . . ., r

k
g, which

can also be stated by saying that the roles granted to

u must be compatible with the logical expression

r
1

~ r
2

~ . . . ~ r
k
. If m has not been restricted with

any role, then v(n) :¼Ø. Subsequently, the elements

of P(P (R)) associated with each node are recur-

sively propagated backward in the call graph,

performing set unions at each node, until a fixed

point is reached.
29

At the end of this process, each

node n will be mapped to a set v(n) ¼ fR
1
, R

2
, . . .,

R
h
g : R

i
¼ r

i1
, r

i2
, . . ., r

iki
g � R, 8i ¼ 1, 2, . . ., h,

meaning that the set of roles granted to u must

evaluate to true for the proposition (r
11

~ r
12

. . . ~
r
1k1

) ^ (r
21

~ r
22

~ . . . r
2k2

) ^ . . . ^ (r
h1

~ r
h2

~ . . . ~
r
hkh

).

ESPE detects a potentially insufficient RBAC policy.

For example, in Figure 4, user bob has been granted

the Employee and Developer roles, which allow bob

to invoke the application’s entry point m
0
, restricted

with the Employee role. However, the roles granted

to bob will not allow bob to execute method m
5
,

which will be invoked as part of the execution

initiated by m
0
. Additionally, the analysis can help

detect if the user has been granted unnecessary

roles. For example, the Developer role is unneces-

sary for user bob in the scenario of Figure 4.

RBAC systems support principal-delegation policies

to override the roles granted to a user. Under a

principal-delegation policy associated with a com-

ponent, all the methods subsequently traversed

execute with the authority as specified by the

principal-delegation policy. For example, consider

the Java EE run-as policy associated with the

component of m
1

and m
4

in Figure 4. This policy

overrides the set of roles granted to user bob with

the singleton fManagerg, which will suffice to

execute method m
7
. To model principal-delegation

policies, the data-flow algorithm described above

must be augmented by killing,
29

at each component

that enforces a principal-delegation policy, any

element of P(P(R)) propagated backward. This
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augmented algorithm detects whether a principal-

delegation policy is insufficient by simply compar-

ing, at each component setting a principal-delega-

tion policy, the roles set by the policy with the roles

propagated backward in G.

The SAVES algorithm

Note that by restricting access to methods, an RBAC

policy induces an implicit access control policy on

the data and resources accessed by those methods.

Often, an RBAC system administrator may not be

aware of how an application’s methods manipulate

underlying data and resources. This may lead to

inconsistent access control policies, whereby two

methods access the same data and resources in the

same mode (such as setGrade and setProfile in

Figure 3), but with different access control restric-

tions according to a misconfigured RBAC.

StudentBean in Figure 3 shows two methods,

setGrade and setProfile, both accessing the

security-sensitive data accessible through the

grades field. As we observed, preventing users in

the role of Student from executing setGrade and

allowing them to execute setProfile leads to an

inconsistent policy, since setProfile allows re-

placing the value of the grades field.

Centonze et al.
14

propose a theoretical foundation

for RBAC to identify such problems and implement a

static analyzer for RBAC consistency validation.

Their implementation, called Static Analysis for

Validation of Enterprise Security (SAVES), considers

abstract memory locations corresponding to EJB

fields. Intuitively, fields represent the granularity by

which an RBAC policy allows control of restricted

data. SAVES distinguishes when a security-sensitive

field f is accessed in read or write mode by a method

m. An RBAC policy for a program p can be seen as a

function l : R ! P (M) where R is the set of roles

defined for p and M is the set of methods executed

by p. An RBAC policy l is said to be location

inconsistent if there exist m 2 M and q 2 R such that

q has been denied access to m, but the same fields

that q could have accessed through m are accessible

through other methods whose access has been

granted to q. A location inconsistency indicates that

the intent of the security policy is unclear. Centonze

et al. have proved that a method-based RBAC policy

l has an equivalent location-based RBAC policy if

and only if l is location consistent.

Given a program p with an RBAC policy l, SAVES

performs a field-sensitive and context-, flow-, and

path-insensitive interprocedural mod-ref analysis to

determine the sets of fields read and written by each

method, and detects potential location inconsisten-

cies for l. If no location inconsistency is detected,

SAVES can report the location-based RBAC policy

equivalent to l. Experimental results reported in

Reference 14 show that the analysis is effective for a

number of Java EE applications.

INFORMATION FLOW

In this section we discuss techniques that identify

information-flow vulnerabilities in software systems

and focus on integrity and confidentiality as the two

main types of vulnerabilities. We discuss the

research work to date in this area and describe in

more detail some recent contributions.

The data manipulated by a program can be tagged

with security levels,
40

which naturally assume the

structure of a partially ordered set. Under certain

conditions, this partially ordered set is a lattice.
41,42

In the simplest example, this lattice only contains

two elements, indicated with high and low. Given a

program, the principle of non-interference dictates

that low-security behavior of the program not be

affected by any high-security data.
43

Assuming that

high means confidential and low means public, then

verifying that no information ever flows from higher

to lower security levels (unless that information has

previously been declassified) is equivalent to veri-

fying confidentiality. Conversely, if high means

untrusted and low means trusted, then verifying that

no information ever flows from higher to lower

security levels (unless that information has previ-

ously been endorsed) is equivalent to verifying

integrity.

Vulnerabilities such as those caused by nonvali-

dated input and injection flaws constitute integrity

violations. Globally, declassification and endorse-

ment are also known as downgrading because they

allow high-level security information to be used in

low-level security contexts.

Integrity
The data that originate from an untrusted source is

referred to as tainted.
44

Tainted data and the

variables that hold or reference it can be maliciously

used for overwrite attacks,
44

which may consist, for

example, of overwriting the name of a file or jump
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address. Sometimes, however, it is necessary to use

a tainted variable in a trusted environment when

restricted resources are accessed. In such cases, the

data can be endorsed by performing sanity checks

on it before using it in restricted operations.
45

Sanity

checks are usually domain or component specific.

For example, the SQL query in Figure 5 needs to

perform a security-sensitive operation based on

input coming from a user. If the program did not

validate user inputs, a malicious client could call

submit Query passing " ' ' OR '1' ¼ '1' " as the value of

the password parameter, causing the password

check in the SQL query to become password¼ " ' ' OR
'1' ¼ '1' ", which always succeeds.

In SBAC systems, integrity issues commonly arise in

the context of privilege-asserting code. The require-

ment for integrity establishes that no value defined

in untrusted code should ever be used inside

privilege-asserting code unless that value has been

previously endorsed. In an SBAC system, a tainted

variable is not necessarily a security problem. It may

constitute a security problem if it is also a privileged

variable, meaning that it is used inside privilege-

asserting code.
3

Even a privileged tainted variable is

not necessarily a security problem. In fact, it is

appropriate to distinguish two types of privileged

tainted variables: if a privileged variable is used to

access a restricted resource, that variable is called

malicious; otherwise, it is called benign. Because

authorization checks are not performed beyond the

stack frame invoking doPrivileged in Java or

Assert in CLR, an untrusted client application could

exploit a malicious variable to have the privilege-

asserting code access arbitrary restricted resources

on its behalf.

Consider, for example, the TaintedLibrary class

shown in Figure 6. Both host and port are tainted

variables because an untrusted client can arbitrarily

set them. The fact that they are used inside privilege-

asserting code to open a socket makes them

malicious and constitutes a potential security risk.

An untrusted client, with no SocketPermission, can

Figure 6
Source code of TaintedLibrary Java class

import java.net.*;
import java.security.*;
public class TaintedLibrary {
      public static Socket createSocket
            (final String host, final int port, final String userName)
                  throws Exception {
            Socket s;
            PrivOp op = new PrivOp(host, port, userName);
            try {
                  s = (Socket) AccessController.doPrivileged(op);
            }
            catch (PrivilegedActionException e) {
                  throw e.getException();
            }
            return s;
      }
}
class PrivOp implements PrivilegedExceptionAction {
      private String host, userName;
      int port;
      PrivOp(String host, int port, String userName) {
            this.host = host;
            this.port = port;
            this.userName = userName;
      }
      public Object run() throws Exception {
            System.out.println("User: " + userName + "; 
                  Host: " + host + "; Port: " + port);
            return new Socket(host, port);
      }
}
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invoke createSocket on the trusted library and

have the library open an arbitrary socket connection

on its behalf. Conversely, variable userName, though

tainted and privileged, is benign because its value is

not used to access a restricted resource. In Figure 2,

variable logFileName is not tainted because its

value cannot be set by a client application.

In RBAC systems, integrity violations can arise due

to incorrectly specified principal-delegation policies.

A principal-delegation policy overwrites the roles

granted to the executing user with the roles specified

by the policy itself. From that point on, the

execution of all the cascading calls will be per-

formed as if the user had been granted the roles

specified by the principal-delegation policy. A

principal-delegation policy is often used to elevate,

in special circumstances, the authority of the users

executing the program, without making it necessary

to grant those users roles that would allow them to

execute unintended operations. For example, in the

scenario of Figure 4, the principal-delegation policy

associated with the component of methods m
1

and

m
4

assigns user bob the role of Manager, which is

required to invoke m
3
. This principal-delegation

policy has made it unnecessary to grant user bob the

role of Manager, which could have been misused.

The integrity requirement establishes that no value

defined by the user be used after the user’s authority

has been elevated unless that value has been

previously endorsed.

Confidentiality

Confidentiality issues in SBAC systems also arise in

the context of privilege-asserting code. The require-

ment for confidentiality establishes that a value

flowing out of a privilege-asserting block of code b

should remain confined inside the component of b

unless a check has been performed to verify that the

value can be safely released. This requirement can

also be used when deciding whether it is appropriate

to make a block of code privilege asserting. For

example, in the Library, class shown in Figure 1, it

is appropriate to make the FileOutputStream

constructor call privilege asserting (as done later in

the code of Figure 2), not only because there is no

integrity break but also because the constructed

FileOutputStream object remains confined inside

the Library class itself. Conversely, the call to the

Socket constructor should not be made part of

privilege-asserting code. Figure 6 shows that if the

code to the Socket constructor were made privilege

asserting, there would be not only an integrity

violation but also a confidentiality violation, be-

cause the constructed Socket object is released to

the potentially untrusted client that invoked

createSocket.

In RBAC systems, confidentiality violations can arise

due to incorrectly specified principal-delegation

policies, as is the case for integrity violations. When

a principal-delegation policy elevates the roles of a

user, all the data defined inside the code executed

under that policy should remain confined inside that

code. For example, in the scenario of Figure 4, any

value defined or computed in the component of m
3

and m
6

has been originated under the authority of

the role Manager. A flow of information which

makes that value accessible to the component of m
1

and m
4

might violate the confidentiality requirement

by allowing users with the role of Employee to

access information intended only for users in the

role of Manager.

Analysis techniques for information flow

While the accurate detection of information flow is

undecidable,
46

static analysis can be used to over-

approximate information flows in a program in

order to ensure information-flow security. In this

section, we present a survey of algorithms for

checking information-flow security.

The basic idea behind using static analysis for

detecting information flow is to statically check that

flow of information between variables in a program

is consistent with the security labeling of variables.

Each variable is labeled with a certain security level.

If a variable x is used to derive, or influence, the

value of another variable y, there is potential

information flow from x to y. The flow is permissible

under a security policy only if the policy allows the

security level of x to flow to the security level of y.

Formally, let (S, �) be a lattice of security levels. For

security levels a and b, a � b means that it is

allowed for information of level a to flow into level

b. If the lattice is modeling confidentiality, then a is

no more secret than b; if the lattice is modeling

integrity, then a is at least as trusted as b. We denote

the security level of a variable x by dom(x). There

exists an explicit flow from x to y if the value of x is

assigned to y in the program, as in y :¼ x. There is an

implicit flow from x to y if the value of x is used to

evaluate the outcome of a conditional, which then

controls an assignment to y, as in if (x . 0) then
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y :¼ 1 else y :¼ 0 endif. We denote an explicit or

implicit flow from x to y as x ) y. Denning and

Denning’s certification of programs for secure

information flow
40

uses the following proposition:

A program respects the security policy implied by

the lattice (S, �) when, for any flow x) y, it must

be the case that dom(x) � dom(y).

To enforce a program’s information-flow security,

this property, which defines a sufficient but not

necessary condition, must be verified for each flow

in the program.

Goguen and Meseguer
43

have given a more general

notion of information-flow security based on non-

interference. Informally, the non-interference prin-

ciple says that an observer must not be able to see

variation in ‘‘low-security’’ outputs that is derived

from variation in ‘‘high-security’’ inputs (so the

observer cannot make any inference on high-

security information). Suppose a computation

undergoes the following transition between input

and output states: (H
1
, L

1
)! (H

2
, L

2
), where H

1
and

H
2

are high-security components and L
1

and L
2

are

low-security components of the states. For this

computation to be secure, it must be the case that

for any other value of high-security component, the

low-security output does not change: ðH 0
1; L1Þ !

ðH 0
2; L2Þ: Remember that the interpretation of the

terms ‘‘high security’’ and ‘‘low security’’ depends

on the problem being solved: for confidentiality,

higher and lower security mean more and less secret;

for integrity, they mean less and more trusted,

respectively. For example, let h be a secret variable

and l be a public variable. Then the program input

h; if (h . 0) then l :¼ 1 else l :¼ 0 endif; output l

violates non-interference, because different initial

values of high input h can result in different final

values of the low output l.

Formally, let w � S 3 S be an interference relation on

security levels. If a w b, the security level a is

allowed to interfere with the security level b, in the

sense that it can impact observable values in level b.

Generally, we are interested in the complement of

this relation, a 6w b; which prohibits a from inter-

fering with b. Note that w must be reflexive, but in

general it need not be transitive.

While Goguen and Meseguer presented non-inter-

ference in a more abstract setting of ‘‘actions,’’ our

presentation here is limited to program statements.

We label each input or output statement x by its

security level dom(x) (generalizing dom to apply to

statements). The security level of an input statement

is the security level of the input value being

provided to the computation. The security level of

an output statement is the security level of the

variable being made visible external to the compu-

tation.

Let run be the state update function State 3

Statement ! State. Let purge be a function that,

given a trace of statements a, removes from it all

such statements x whose security level must not

interfere with a given security level t; it is defined as

follows: purge(x � a, t) :¼ x � purge(a, t) if dom(x) w

t, and purge(x � a, t) :¼ purge(a, t) otherwise. Let s
0

be the initial state of the program. Then, the security

criterion can be stated as follows:

A program respects the security policy implied by

a non-interference relation 6w if for any sequence of

statements a in an execution ending in a

statement z:

outputðrunðs0; aÞ; zÞ
¼ outputðrunðs0; purgeða; domðzÞÞÞ; zÞ

That is, the output produced at statement z must be

identical even if all such previous statements have

been purged whose security level must not interfere

with the security level of z. In the previous example,

on any run in which input h is purged (and the

default value of h, assumed 0, is in effect), the

output is 0 for l; whereas a nonpurged run with

input value of 1 or higher would produce the output

of 1 for l. For sake of contrast, consider a slightly

modified example: input h; if (h . 0) then l :¼ 1

else l :¼ 0 endif; l :¼ 2; output l. In this example,

even if the statement input h is purged from any

run, the output for l is 2, which is the same as for

any nonpurged run, and so the conditions for non-

interference are satisfied.

Non-interference is a more general criterion than

our first criterion of secure information flow, in that

it only constrains the projection of outputs produced

from actual statement sequences; it does not

constrain implicit or explicit flow at each statement.

Note that Denning and Denning’s criterion would

have rejected the modified example above because

an implicit flow violating the security-lattice rule

does exist. Volpano, et al.
47

have shown a type-
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based algorithm that certifies implicit and explicit

flows similarly to the first criterion and also ensures

non-interference. Non-interference is traditionally

the technical criterion used for proving correctness

of security analysis algorithms or type systems.

However, it is also harder to check non-interference

directly.

Secure information flow is important in the context

of Web applications. A number of approaches for

reasoning about flow of information in systems with

mutual distrust have been proposed. For example,

Myers and Liskov
48

use static analysis for certifying

information control flow and avoiding costly run-

time checks.

In Java and CLR, information flow issues are

particularly relevant with privilege-asserting code.

Privilege-asserting code has historic roots in the

1970s. The Digital Equipment Corporation (DEC)

Virtual Address eXtension/Virtual Memory System

(VAX/VMS) operating system had a feature similar to

the doPrivileged method in Java 2 and the Assert

method in CLR. The VAX/VMS feature was called

privileged images. Privileged images were similar to

UNIX setuid programs,
15

except that privileged

images ran in the same process as all the user’s other

unprivileged programs. Thus, they were consider-

ably easier to attack than UNIX setuid programs

because they lacked the usual separate process and

separate address-space protections. One example of

an attack on privileged images is demonstrated in a

paper by Koegel, Koegel, Li, and Miruke.
49

The notion of tainted variables as vehicles for

integrity violations became known with the Perl

language. In Perl, using the �T option allows

detecting tainted variables.
50

Shankar, Talwar,

Foster, and Wagner present a tainted-variable

analysis for CQual using constraint graphs.
51

To find

format string bugs, CQual uses a type-qualifier

system with two qualifiers: tainted and untainted.
52

The types of values that can be controlled by an

untrusted adversary are qualified as being tainted,

and the rest of the variables are qualified as

untainted. A constraint graph is constructed for a

CQual program. If there is a path from a tainted node

to an untainted node in the graph, an error is flagged.

Newsome and Song propose a dynamic tainted-

variable analysis that catches errors by monitoring

tainted variables at runtime.
44

Data originating or

arithmetically derived from untrusted sources, such

as the network, are marked as tainted. Tainted

variables are tracked at runtime, and when they are

used in a dangerous way, an attack is detected.

Ashcraft and Engler
45

also use tainted-variable

analysis to detect software attacks due to tainted

variables. Their approach provides user-defined

sanity checks to untaint potentially tainted vari-

ables.

Pistoia
26

proposes an algorithm based on program

slicing to automatically discover malicious tainted

variables in a library. His approach can be used to

decide whether a portion of library code should be

made privileged or not.

Hammer, Krinke, and Snelting’s algorithm
Snelting et al.

53
make the observation that program

dependence graphs (PDGs) and non-interference are

related in the following manner. Consider two

statements s
1

and s
2
. If dom(s

1
) 6w dom(s

2
), then, in a

security-correct program, it must be the case that s
1
=2

backslice(s
2
). Here, backslice is the function that

maps each statement s to its static backward slice,

consisting of all the (transitive) predecessors of s

along control- and data-dependence edges in the

PDG. Based on this observation, Hammer et al.
54

have presented an algorithm that checks for non-

interference: for any output statement s, it must be

the case that backslice(s) contains only statements

that have a lower security label than s. Hammer et al.

also refine slices with path conditions to get higher

accuracy, but we elide the details here. Note that

even PDG-based computation, as in the above

technique, is only an approximation to the ideal of

non-interference. We assume that the reader is

familiar with PDGs and slicing, as these are standard

concepts in program analysis. Here, we present just

an example to illustrate the idea in the context of

information-flow security. Consider the program

shown in Figure 7. (Figure 8 shows the PDG for this

program.) Edges that are in the backward slice from

the output statement are shown in red. It is clear that

the backward slice of the output statement includes

the higher-security input statements, which must not

interfere with the output statement (assume that w

coincides with � in the security lattice shown in

Figure 7). Note also, that a more sophisticated

program verifier may be able to reason that the

outcome of the branch at line 10 is always false. An

ideal checker for non-interference would not report a
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security violation. It should be noted that PDG-based

algorithms, such as the one above, have not been

shown to scale to large applications, of the size of

several hundred-thousand lines of code. Flow-

sensitive approaches, such as Denning and Den-

ning’s algorithm and several type-system-based

algorithms, can scale better. The latter also enjoy the

advantage of compositional analysis, which means

that parts of programs can be analyzed in isolation,

which is generally hard to do in PDG-based analysis.

Dealing with heap data

In this section, we describe an algorithm for

performing non-interference analysis in the pres-

ence of heap-allocated data structures, which are

very common in Java and other object-oriented

languages. The analysis of heap-based objects is an

entire area of research in itself, and even a brief

survey is beyond the scope of this article; a recent

research paper
55

gives a good overview of the

current state of the art. In the present paper, we

focus on a recent algorithm by Livshits and Lam
56

that is engineered to work well for tainted-variable

analysis of large Java applications.

Livshits and Lam’s analysis requires prior compu-

tation of a specific heap analysis called flow-

insensitive points-to analysis. This analysis com-

putes a ‘‘may point to’’ relation over a program,

where pointsTo(o
1
.f, o

2
) means that the field f of the

object named o
1

might refer to the object named o
2

in some execution of the program. A points-to

relation is also computed for local variables:

pointsTo(t, o) means that the local variable t might

refer to the object named o. The relation

pointsTo(t.f, o) holds if there exists an o0 such that

pointsTo(t, o0) and pointsTo(o0.f, o). The pointsTo

relation is the same for the entire program, ignoring

the control flow of the program. (By contrast, the

PDG-based algorithm of Hammer et al. handles heap

objects in a flow-sensitive manner, albeit at much

higher cost.) We refer the reader to a paper by

Whaley and Lam
57

that describes the details of the

heap analysis used by Livshits and Lam.

Tainted-variable analysis is an integrity problem in

which we are interested as to whether less-trusted

data obtained from the user might influence other

data that the system trusts. Clearly, to do this

analysis, one needs to identify sources and sinks of

possibly tainted data. For Java, this amounts to

identifying methods that originate a tainted value

and methods that use a possibly tainted value. The

Livshits and Lam algorithm gets this information

Figure 7
Example illustrating information-flow algorithms

Security labeling:

h1, topSecretFile:  TOPSEC;
h2, confidentialFile:  CONF;
11:  LO1;
12:  LO2;
m, publicFile;  PUB;

Program Statements

1:   input h1 from topSecretFile;
2:   input h2 from confidentialFile;
3:   if (h1 op h2) {
4:     11 = 1;
5:     12 = 0;
6:   } else {
7:     11 = 0;
8:     12 = 1;
9:   }
10:  if (11 == 12) {
11:    m = true;
12:  } else {
13:    m = false;
14:  }
15:  output m to publicFile;

                     Security lattice

                  PUB < CONF < TOPSEC
                      LO1 V LO2 < PUB

  Statement-wise Certification Checks

         dom(topSecretFile) < dom(h1)
      dom(confidentialFile) < dom(h2)

dom(h1) V dom(h2) < dom(11)   dom(12)

           dom(11) V dom(12) < dom(m)
             dom(m) < dom(publicFile)

V
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from programmer-supplied descriptors. A source

descriptor is of the form hm, p, ai, where m is a

method, p is the position of a certain argument, and

a is a possibly empty field-access path from m’s p-th

parameter. A non-empty access path is needed when

a field of a parameter points to the object of interest.

The position of the return value is�1. For example,

a method getParameter (String username) has the

following descriptor: hgetParameter,�1, ei, which

means that the return value from getParameter

refers to the tainted source object. In the same way,

sink descriptors can be given for methods that need a

trusted value. For example, a method executeQuery

(String query) has the descriptor hexecuteQuery,

1, ei, meaning that the query parameter points to an

object that the method trusts.

Suppose there is a program variable t
1
, such that

t
1
.a refers to a source object corresponding to some

source descriptor hm, p, ai. Suppose another

variable t
2

is such that t
2
.a0 refers to a sink object

corresponding to some sink descriptor hm0, p0, a0i. If

there exists an object o, such that pointsTo(t
1
.a, o)

and also pointsTo(t
2
.a0, o), then the algorithm

conservatively assumes that there is a possible flow

from the source to the sink. Note that there is no

indication from the pointsTo relation that the two

specific pointsTo facts used in the above deduction

hold during the same program execution.

Sometimes, there is a need to pass on taintedness

between objects handled by a library call. For

example, the StringBuffer.append (String

instring) function returns an output string derived

from an input string. Livshits and Lam require

‘‘derivation descriptors’’ for such methods. A deri-

vation descriptor is of the form hm, p
s
, a

s
, p

d
, a

d
i,

with the meaning that in method m, the object

refereed by its p
d
-th parameter (along access path

a
d
) is derived from its p

s
-th parameter (along access

path a
s
). For example, the descriptor for append is

happend, 1, e, �1, ei. In the presence of such

methods, the value-flow computation has to account

for (transitive) flow from a tainted source to a

derivation method’s input, and from a derivation

method’s output to a sink.

API CONFORMANCE

In this section we describe the security vulnerabil-

ities related to violations of API specifications,

present a brief survey of work in the area of

automatic identification of API violations, and

discuss in detail some recent program-analysis

approaches.

Enterprise software platforms provide a number of

APIs for system security services. These services

often present nontrivial interfaces with complex and

unenforced usage constraints. Misuse of such

Figure 8
Program dependence graph for example in Figure 7
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interfaces are not detected by the compiler and can

lead to unintended security holes. Some API

conformance rules can be checked with trivial

syntactic code scanning, commonly provided by

tools such as FindBugs,
58

PMD,
59

and Rational

CodeReview.
60

For example, Java EE practices for

security may include rules such as ‘‘Don’t call

java.security.Policy.setPolicy,’’ or ‘‘Classes

that extend java.security.Permission should be

final.’’

Other APIs depend on more complex temporal

safety properties. Consider, for example, the public-

key cryptography services from Java’s

java.security package. In particular, class

java.security.Signature provides digital signa-

ture functionality. A client must invoke the methods

of a Signature object according to API conformance

rules described in the class documentation. If the

client fails to follow these conformance rules, the

application will receive a security-related exception.

Note that the conformance rules are not expressed in

the programming language, and are not checked by

the compiler.

These API conformance rules can be expressed as

temporal safety properties in a deterministic finite

state automaton, or a typestate specification.
61

Typestate specifications can encode correct usage

rules for many security-related libraries and inter-

faces.
62,63

For example, Figure 9 presents a partial

typestate specification of a Signature object. This

partial specification represents a subset of the

permitted behaviors for a Signature object (we omit

some behaviors for simplicity). For this typestate

specification, if a Signature object moves to the

ERROR state, then a runtime exception may be

thrown at program runtime. Typestate verification

represents a classic problem in program verification.

Analysis techniques for API conformance
Strom and Yemini introduced the typestate model to

describe temporal safety properties.
61

In subsequent

years, a large number of efforts have focused on

verifying or checking typestate properties for im-

perative programming languages such as C or Java.

Previous work on typestate verification has included

approaches that use special type systems or program

annotations
61,64–70

(these systems often restrict

aliasing by various means, although Reference 68

does not) and techniques that are purely analyti-

cal.
71–79

Note that a number of these approaches

address verification problems not expressible in

terms of finite state machines, in addition to those

that are. The ESP system
74

uses context-sensitive

interprocedural data-flow analysis to check type-

state properties for C programs. ESP introduces

property simulation, a heuristic to provide partial

path sensitivity according to how data-flow facts

correlate with particular typestates. For object-

oriented languages, typestate specifications com-

monly associate a typestate with a particular object

instance. In order to reason about how a program

manipulates an object, alias analysis presents a key

challenge. Many existing verification frameworks

use a two-phase approach, performing points-to

analysis as a preceding phase, followed by typestate

checking.
71,74,80

The current version of ESP
75

uses

an integrated approach, recording typestate and

alias information in a flow-sensitive manner. Field

et al. present algorithms based on abstractions that

integrate alias and typestate information but re-

stricted to shallow programs, with only single-level

pointers to typestate objects.
77

The parametric shape analysis presented in Refer-

ence 81 has served as the basis for very precise

verification algorithms, in which the verification is

integrated with heap analysis.
78,79,82

These algo-

rithms, however, do not scale well. Approaches

based on counterexample-guided refinement have

had impressive results in certain domains,
83,84

but

so far they have been less successful in dealing with

complex heap manipulation, partly because these

approaches attempt to automatically derive appro-

priate heap analyses. Flow analyses can apply to

Figure 9
Partial typestate automaton for java.security.Signature

update, sign, verify

update, verify, initVerify

update, sign, initSign

verify

sign

initSign

initVerify

initSigninitVerifyINIT ERROR

SIGN

VERIFY
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extant programs in general programming languages,

but generally require expensive interprocedural

analysis. In contrast, type systems can provide a

modular approach to typestate checking, but gen-

erally can accept a smaller class of correct programs.

DeLine and Fähndrich
85

present a type system for

typestate properties for objects. Their system en-

sures that a program which typechecks has no

typestate violations and provides a modular, sound

checker for object-oriented programs. To handle

aliasing, they employ the adoption and focus

operations to a linear type system, as described in

Reference 86. With these operations, the type

checker can assume must-alias properties for a

limited program scope and thus, apply strong

updates allowing typestate transitions. Aiken et al.
70

present an inference algorithm for inferring restrict-

ed and confined pointers, which they use to enable

strong updates.

A state-of-the-art typestate-verifier algorithm

This section presents an overview of a state-of-the-

art typestate verifier algorithm for Java.
76

The

verification system is a composite verifier built out of

several composable verifiers of increasing precision

and cost. Each verifier can run independently, but

the composite verifier stages analyses in order to

improve efficiency without compromising precision.

The early stages use the faster verifiers to reduce the

workload for later, more precise stages, as shown in

Figure 10.

The system is comprised of four stages: a flow-

insensitive analysis, an intraprocedural analyzer, an

inexpensive analysis based on uniqueness analysis,

and an integrated verifier combining alias informa-

tion and typestates. This subsection covers a short

overview of an abstraction technique used by the

integrated verifier, the last and most precise analysis

stage. The integrated verifier performs flow- and

context-sensitive verification with an abstraction

that combines aliasing information with typestate

information. The use of a combined domain is more

precise than separately performing typestate check-

ing and flow-sensitive alias analysis, as is common

with abstract interpretation over combined

domains.
87

The abstract domain captures information about the

typestate of the given abstract object, as well as

information regarding potential aliases of an ab-

stract object. In this presentation, we represent an

abstract program state as a set of tuples, where each

tuple has the following elements:

� AO, a representation of an abstract object from the

preliminary pointer analysis
� T, the typestate occupied by the abstract object
� Must, a set of symbolic access paths (for example,

x.f.g) that must point to a particular object
� May, a bit indicating whether the Must set is

incomplete; may there exist other access paths

pointing to the abstract object, which do not

appear in the Must set?
� MustNot, a set of symbolic access paths that must

not point to a particular object

Notice that this paper presents a simplified abstrac-

tion to illustrate the combined tracking of aliasing

and typestate. The full verifier
76

also incorporates a

uniqueness abstraction and several optimizations,

not described here.

By way of example, consider the code in Figure 11.

We wish to verify that the program uses Signature

objects correctly according to the typestate specifi-

cation of Figure 9.

The example includes one allocation site for

Signature objects, the allocation at line 5, which we

will denote by S. When processing this statement for

the first time, the solver generates an abstract state

representing an abstract object S in the INIT state,

pointed-to by s. Immediately after line 5, there can

be no other pointers to this object, so May is set to

false, resulting in an abstract program state of fhS,

INIT, fsg, false, Øig.

Figure 10
A state-of-the-art typestate verifier for Java

Initial verification 

scope 
Integrated 
verifier

Uniqueness-based
verifier 

Intra-procedural
verifier

Flow-insensitive
feasibility check

Possible 

failure points
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Based on the typestate automaton, we see that

statement 6 forces a typestate transition to the SIGN

state. Because the abstract state includes Must

points-to information for s, the effect of statement 6

can be precisely reflected by a strong update,

resulting in an abstract state of fhS, SIGN, fsg,
false, Øig.

The next interesting operation occurs at statement 9,

which stores the abstract object into a set. Because

the abstraction has not been tracking this set,

statement 9 induces new access paths which may

point to the abstract object. The abstraction models

this by setting May to true, as follows: fhS, SIGN, fsg,
true, Øig.

A key element of the integrated verifier’s abstraction

is the use of a focus operation,
81

which dynamically

(during analysis) makes distinctions between ob-

jects that the underlying basic points-to analysis

does not distinguish. In the example code, the key

focus operation occurs at statement 14. When first

propagating at statement 14, the solver propagates

an abstract state that indicates an abstract object in

the SIGN state, but does not indicate any useful Must

pointer information: fhS, SIGN, Ø, true, Øig.

Statement 14 causes a typestate transition to the

VERIFY state. In order to apply strong updates

downstream, the solver applies a focus operation to

split the abstract state into two cases, each of which

holds more precise pointer information. There are

two possibilities for each concrete object at this

program point: either s2 points to the object, or it

does not. In the first case, statement 14 causes a

transition to the VERIFY state, and s2 must point to

the object; in the second case, statement 14 does not

cause a typestate transition, and s2 must not point to

the abstract object; therefore, after applying this

focus logic to statement 14, the abstraction produces

two tuples: fhS, VERIFY, fs2g, true, Øi, hS, SIGN, Ø,

true, fs2gig.

Downstream, when processing statement 16, the

solver uses the alias information to avoid a spurious

transition (false positive) to the ERROR state. In

particular, the second tuple indicates that s2 must

not point to the object manipulated by statement 16;

thus, the call to verify will not occur on an object in

the SIGN state.

The solver thus iterates to a fixed point, updating the

abstract state at each program point based on simple

flow functions derived from the language semantics.

Table 1 shows the final result of the fixed-point

iteration at each program point in the example. The

abstraction suffices to demonstrate that this example

uses Signature objects correctly, although those

objects flow through complex collection classes.

More generally, this verifier can verify similar

patterns that flow across procedures, using flow-

Figure 11
Example program using java.security.Signature

1: public static void foo() throws Exception {
2:  Collection<Signature> signatures = new LinkedList<Signature>();
3:
4:  for (int i = 0; i < 5; i++) {
5:   Signature s = new Signature();
6:   s.initSign();
7:   s.update();
8:   s.sign();
9:   signatures.add(s);
10:  }
11:
12:  for(Iterator<Signature> it2=signatures.iterator();it2.hasNext(); ){
13:   Signature s2 = it2.next();
14:   s2.initVerify();
15:   s2.update();
16:   s2.verify();
17:  }
18: }
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and context-sensitive interprocedural data-flow

analysis. The current implementation, as described

in Reference 76, can analyze roughly 100,000 LOC

(lines of code) in about 10 minutes. The results in

Reference 76 report that the analyzer verifies

correctness for 93 percent of the eligible statements,

throughout a suite of moderate-sized benchmarks,

for a set of 11 typestate properties from the Java

standard libraries.

CONCLUSION

In this paper, we describe various static-analysis

techniques for identifying security vulnerabilities in

software systems. We present a number of security

analyses in detail and provide a broad overview of

related work in several areas. In particular, we focus

on analyses of component-based systems, such as

the Java and .NET CLR platforms, which have

adopted both SBAC and RBAC as access-control

mechanisms. For such systems, we discuss how

static analysis can facilitate automatic determination

of permission requirements and automatic place-

ment of privilege-asserting operations. Additionally,

we show how to detect violations of policies for

integrity and confidentiality. Finally, we discuss

how static analysis can be used to verify the correct

usage of security libraries and interfaces. For each of

these areas, we present a brief survey of research

results and then discuss a few algorithms in depth in

order to illustrate fundamental algorithmic

techniques.
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