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ABSTRACT
The Coupled Cluster (CC) method is used to compute the electronic correlation energy in atoms and molecules and often leads to
highly accurate results. However, due to its single-reference nature, standard CC in its projected form fails to describe quantum states
characterized by strong electronic correlations and multi-reference projective methods become necessary. On the other hand, quantum
algorithms for the solution of many-electron problems have also emerged recently. The quantum unitary variant of CC (UCC) with
singles and doubles (q-UCCSD) is a popular wavefunction Ansatz for the variational quantum eigensolver algorithm. The variational
nature of this approach can lead to significant advantages compared to its classical equivalent in the projected form, in particular, for
the description of strong electronic correlation. However, due to the large number of gate operations required in q-UCCSD, approxi-
mations need to be introduced in order to make this approach implementable in a state-of-the-art quantum computer. In this work, we
evaluate several variants of the standard q-UCCSD Ansatz in which only a subset of excitations is included. In particular, we investigate
the singlet and pair q-UCCD approaches combined with orbital optimization. We show that these approaches can capture the dissocia-
tion/distortion profiles of challenging systems, such as H4, H2O, and N2 molecules, as well as the one-dimensional periodic Fermi–Hubbard
chain. These results promote the future use of q-UCC methods for the solution of challenging electronic structure problems in quantum
chemistry.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5141835., s

I. INTRODUCTION

One of the main goals of computational quantum chemistry
is the design of efficient methods for the calculation of the ground
and excited state properties of molecular systems. When combined
with experimental results, first-principles (or ab initio) calculations

enable the investigation of chemical and industrial processes (e.g.,
catalysis, electrochemistry, polymerization, and photochemistry, to
mention only a few) as well as the discovery of new materials and
catalysts.1–6

The ground state energy of a molecular or solid state system
can be obtained from the solution of the corresponding Schrödinger
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equation. However, the solution space (i.e., the Hilbert space) grows
exponentially with the system size, N (e.g., the number of elec-
trons and basis functions), making the exact solution of this prob-
lem intractable for systems with more than a few atoms.7 Relying
on a mean field approach, the Hartree–Fock (HF) method allows
us to efficiently compute [O(N4)] an approximation of the ground
state, which does not include any electronic correlation effects.8
The correction to the energy can then be computed with the so-
called post-HF methods. Among the most popular ones, we find
Møller–Plesset (MP) perturbation theory,9–12 Configuration Inter-
action (CI),13 and Coupled Cluster (CC).14–16 In particular, in CC,
the exponential Ansatz allows the systematic introduction of higher
order configurations andmakes the approach size extensive. The CC
method including single, double and an approximate treatment of
the triple excitations, named CCSD(T),17 scales as O(N7)16 and is
often regarded as the gold standard for quantum chemistry calcu-
lations. Usually, the projective CC equations14 are iteratively solved
using, for instance, the quasi-Newton and direct inversion iterative
sub-space methods.7 The single-reference formulation has the dis-
advantage to be non-variational and has been shown to fail in the
limit of strongly correlated regimes of diatomic molecules such as
N2 for which static correlations (with their multi-reference charac-
ter) are known to play a decisive role.18–21 While a variational version
of CC was proposed,18 the high computational cost associated with
the numerical optimization of the CC parameters has limited its
applications.

Interestingly, the unitary variant of CC (UCC)22–25 can natu-
rally be mapped to a quantum circuit for the preparation of the
corresponding wavefunction in a digital quantum computer.26–33
Moreover, variational approaches and, in particular, the Variational
Quantum Eigensolver (VQE) algorithm26 in combination with trun-
cated wavefunction expansions (with polynomial number of param-
eters) appear, at present, the most promising way of solving chem-
istry problems on near-term quantum hardware.34–38 Hence, in this
work, we study the performance of the variational implementa-
tion of UCC as a quantum algorithm (q-UCC)26 in computing the
ground state of molecules and lattice models for which the clas-
sical CC formulation is known to break. For the practical imple-
mentation of the q-UCC (i.e., reduction of the circuit depth), we
also study two variations of the Ansatz, namely, pair CC doubles
(pCCD)19,20,39,40 and singlet CC doubles (CCD0).19,21 These alter-
natives were previously developed to address the breakdown of the
standard CC theory, in particular, when strong correlation effects
become important. Classically, the CCD and pCCD Ansätze were
shown to provide more accurate results when combined with orbital
optimization (OO) within the Lagrangian CCD-Λ formulation.41–44
Here, we investigate the implementation of this class of truncated
CC expansions into the corresponding quantum algorithms. In par-
ticular, the OO procedure is embedded as an extension of the VQE
algorithm, which we name ooVQE. Its performance in terms of
accuracy and efficiency is studied in combination with the series
of q-UCC Ansätze introduced above. This paper is organized as
follows: In Sec. II, we define the molecular and Hubbard Hamil-
tonians and recall the theory of the classical CC and UCC meth-
ods. We also discuss the q-UCC and the quantum equivalents of
pCCD and CCD0, i.e., q-pUCCD and q-UCCD0, as new parame-
terized wavefunctions. Section III describes the implementation of
these methods within the framework of the VQE and the ooVQE

algorithms. In Sec. IV, we apply quantum unitary variant of CC
(UCC) with singles and doubles (q-UCCSD), and q-pUCCD and
q-UCCD0 (with and without the use of OO) to the H4, N2, and
H2O molecules and the one-dimensional Hubbard chain with six
sites (two spins) in which strong correlation effects may induce
the failure of the standard CC theory. Conclusions are presented
in Sec. V.

II. THEORY

A. Molecular Hamiltonian
Within the Born–Oppenheimer approximation, the non-

relativistic molecular Hamiltonian in second quantization is
given by

Ĥ =�
rs
�r�ĥ�s��

στ
â†
r,σ âs,τ +

1
2�rstu�rs�ĝ�tu�

× �
στν�

â†
r,σ â

†
s,τ âu,νât,� + ENN , (1)

where the one-electron integrals, �r|ĥ|s�, and the two-electron inte-
grals, �rs|ĝ|tu�, are given in Appendix A; â†

r,σ (âr ,σ) represent the
fermionic creation (annihilation) operators for electrons in HF spin-
orbitals, ϕr,σ(�r) with spatial component (molecular orbitals, MOs)
ϕr(�r) and spin σ ∈ {↑, ↓}. ENN describes the nuclear repulsion energy.
Here and for the remainder of this work, we use indices r, s, t, u
to label general MOs; i, j, k, l for occupied MOs; m, n, p, q for
virtual ones; and σ, τ, �, ν for spin components of spin-orbitals.
The same spatial orbitals are used for both spin-up and spin-down
spin-orbitals.

B. Hubbard Hamiltonian
The repulsive N-site Fermi–Hubbard Hamiltonian is

defined as

Ĥ = −t N,{↑,↓}�
r,σ
(â†

r+1,σ âr,σ + â†
r,σ âr+1,σ) +U

N�
r
n̂r,↑n̂r,↓, (2)

where t is the energy associated with electron hopping, U is the on-
site electronic repulsion, and n̂r,σ are the number operators â†

r,σ âr,σ .
The index r labels the lattice sites, each of which is divided into
two sub-sites for spin up (↑) and down (↓). This implies that the
representation of this Hamiltonian on a lattice requires at least 2N
qubits.

C. Classical coupled cluster and unitary coupled
cluster Ansätze

A non-linear parameterization of the system wavefunction is
given by the CC Ansatz

�Ψ(�θ)� = eT̂(�θ)�Φ0�, (3)

where |Φ0� is the Hartree–Fock state, �θ is the CC amplitude vector,
and T̂(�θ) is the full excitation operator, defined as

T̂(�θ) = n�
k=1

T̂k(�θ), (4)
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with T̂k(�θ) being the excitation operator of kth order. The cal-
culation of the CC amplitudes �θ is commonly performed self-
consistently, solving the projective CC equations7 but may lead to
non-variational energies.

The UCC Ansatz defined as

�Ψ(�θ)� = eT̂(�θ)−T̂†(�θ)�Φ0� (5)

is of particular importance for quantum computing since the
eT̂(�θ)−T̂†(�θ) operator is unitary and therefore can be straightfor-
wardly implemented as a quantum circuit. We stress that the
variational UCC method is different to variational CC (vCC)
and shows large deviations when strong electron correlation is
involved.45

D. Quantum unitary coupled cluster singles doubles:
q-UCCSD

The quantum implementation of the UCC Ansatz, named q-
UCC, requires the use of the Trotter formula, which allows us to
construct the Ansatz with a sequence of quantum gates. For two
general operators Â and B̂, the formula reads

e(Â+B̂) = lim
n→∞�e

Â
n e

B̂
n �n +O(1�n). (6)

For n = 1 and with restriction to single and double excitations, the
q-UCCSD operator eT̂(�θ)−T̂†(�θ) can be expressed as

eT̂1(�θ)−T̂†
1 (�θ)eT̂2(�θ)−T̂†

2 (�θ) ≈�
mi,σ

eθmσ iσ (â†m,σ âi,σ−â†i,σ âm,σ)

× �
mnij,στ

eθmσ nτ iσ jτ (â†m,σ â
†
n,τ âi,σ âj,τ−â†j,τ â†i,σ ân,τ âm,σ).

(7)

In Ref. 29, we showed that a single Trotter step is sufficient in
the VQE approach to reach the ground state energy within chemical
accuracy (i.e., with an error less than 1 kcal/mol or 1.6 ⋅ 10−3 hartree)
for theH2 molecule. For the case of q-UCCSD in small systems, there
is evidence29 that the error can be “absorbed” and distributed over
the entire set of q-UCCSD parameters during the VQE optimiza-
tion. Although in a recent work,46 the authors claim that n = 1might
not be sufficient and n = 2 with independent variational parameters
for the second Trotter step may be necessary, in this work, we are
investigating alternative solutions that do not imply an increase in
the circuit depth.

The implementation of Eq. (7) in a quantum circuit requires the
mapping of the fermionic operators to the qubit operators, which
is accomplished using the so-called fermion-to-qubit transforma-
tions (e.g., the Jordan–Wigner,47 the parity, or the Bravyi–Kitaev48
transformations).

E. Variants of quantum unitary coupled cluster
Ansatz

The q-UCCSD operator [Eq. (7)] can be approximated by
neglecting classes of excitations from the T̂2(�θ) operator.We present
two tuned quantum versions of the original CC Ansatz that have
shown interesting results in applications to systems in strongly
correlated regimes.19

1. Quantum (orbital-optimized) pair unitary
coupled cluster doubles: q-(oo-)pUCCD

Within the pCCD approach, electrons with opposite spins are
only allowed to undergo the same type of excitation (pair) between
the occupied and virtual HF orbitals. More precisely, the double
excitation operator T̂2(�θ) becomes (see Fig. 1)

T̂pCCD
2 (�θ) =�

mi
θm↑m↓i↑i↓ â

†
m,↑â†

m,↓âi,↑âi,↓. (8)

The full pCCD excitation operator then reads

T̂(�θ) = T̂pCC
2 (�θ). (9)

Recently, Lee et al.49 demonstrated that the wavefunction Ansatz
related to pCCD, named k-UpCCGSD, can be systematically
improved by applying k-times the trotterized UpCCGSD operator
(which includes generalized single and pair double excitations) with
independent amplitudes.

Classically, the pCCD approach showed an excellent perfor-
mance when used with OO.42 In short, the oo-pCCD approach con-
sists of two main steps: (i) optimization of orbital rotations using a
unitary operation R = e−κ, where κ is an anti-Hermitian matrix with
rank equal to the number of MOs,41,50 and (ii) the optimization of
the pair �θ amplitudes associated with the T̂pCC

2 operator defined in
Eq. (8).

Inspired by the classical implementation, we propose a vari-
ant of the pCCD approach in which the rotation operator R = e−κ
is directly applied to the orbitals instead of acting on the molecu-
lar Hamiltonian in second quantization (see Appendix B). In this
way, the matrix R induces simply a change in the Hamiltonian coef-
ficients in Eq. (1) according to ϕ′s = ∑r Rsrϕr , where {ϕr}Nr=1 rep-
resents the initial set of one-electron MOs and {ϕnr }Nr=1 represents
the rotated one. The main advantage of this approach lies in the fact
that the gate operations associated with the single excitation oper-
ator T̂1 can be replaced by the optimization of the matrix elements
of the anti-Hermitian matrix κ, followed by a re-evaluation of the
Hamiltonian matrix elements. We name this new method quantum
orbital-optimized pair UCCD (q-oo-pUCCD) and give an in-depth
study in Appendix C.

FIG. 1. Sketch of the possible two-body excitations in different implementations of
the q-UCC Ansatz. In the q-UCCSD approach (left panel), double excitations can
involve any pair of occupied and virtual orbitals (shown is a double excitation com-
posed by an excitation in the spin-up manifold and one in the spin-down manifold).
In q-pUCCD (middle panel), double excitations within the spin-up and spin-down
MOs are forced to occur in pairs, while in q-UCCD0 (right panel), double excitations
indicated with solid and dashed lines are associated with the same amplitudes, and
therefore, only one of the two is explicitly included in the T̂2 operator.
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2. Quantum (orbital-optimized) singlet unitary
coupled cluster doubles (full): q-(oo-)UCCD0(-full)

The q-pUCCD approach does not correlate more than two spa-
tial MOs at a time, especially when the restricted HF (RHF) is used to
generate the MOs. Another approximation can be used to overcome
this limitation while reducing substantially the number of terms
in the T̂2 operator. In the singlet CC method, CCD0,19 the dou-
ble excitation operator is split into singlet T̂0

2(�θ) and triplet T̂1
2(�θ)

components,

T̂2(�θ) = T̂0
2(�θ) + T̂1

2(�θ), (10)

where

T̂0
2(�θ) = �

mnij

αmnij

2
(â†

m,↓â†
n,↑ + â†

n,↓â†
m,↑)(âj,↑ âi,↓ + âi,↑ âj,↓), (11a)

T̂1
2(�θ) = �

mnij

βmnij

2
�â†

m,↑â†
n,↑âj,↑âi,↑ + â†

m,↓â†
n,↓âj,↓ âi,↓

+
1
2
(â†

m,↓â†
n,↑ − â†

n,↓â†
m,↑)(âj,↑ âi,↓ − âi,↑ âj,↓)�. (11b)

Using the symmetry under interchange of indices for T̂0
2 and the

anti-symmetry for T̂1
2 , the coefficients �α,�β can be related to the

original parameters �θ as follows:
αmnij = αnmij = αmnji = αnmji = θmnij + θnmij

2
, (12)

βmnij = −βnmij = −βmnji = βnmji = θmnij − θnmij

2
, (13)

where we also use the relation θmnij = θnmji = θm↑n↓i↑j↓ .51 As a con-
sequence, only one out of the four cases in (12) can be considered
for each set of indices (m, n, i, j). This subset of indices is named
Ω. When using the RHF approach, the spatial MOs involved in such
excitations are the same for both spins, adding an extra symmetry
to further reduce the number of excitation operators. We define the
q-UCCD0 excitation operator (see Fig. 1), based on subsetΩ, as

T̂(�θ) = T̂0,Ω
2 (�θ) (14)

and

T̂0,Ω
2 (�θ) = �

mnij⊂Ω
θm↑n↓i↑j↓ â

†
m,↑ â†

n,↓âj,↑ âi,↓. (15)

In addition, we also implement the full form of the CCD0
Ansatz proposed by Bulik et al.19 in which the choice of the indices
(m, n, i, j) in the definition of the T̂0

2(�θ) operator [see Eq. (15)] is not
restricted to theΩ subset,

T̂(�θ) = T̂0
2(�θ). (16)

In the following, we refer to this method as q-UCCD0-full. Even
though the two expansions (q-UCCSD0 and q-UCCSD0-full) are
characterized by the same number of parameters, the number of
excitation operators is different in the two cases (in the q-UCCD0-
full Ansatz, up to four excitations can be controlled by the same

parameter). For this reason, the optimized ground state wavefunc-
tion can differ in the two approaches giving rise to different energies
and PES shapes. In Appendix E, we provide the simplest non-trivial
example of these Ansätze.

The major difference with the triplet operator T̂1
2(�θ) is that the

latter also includes the same-spin excitations (i.e., double excitations
of the same spin). As shown in Ref. 19, when T̂1

2(�θ) is used instead
of T̂0

2(�θ) for the calculation of the dissociation profile of molecules
in strongly correlated regimes, the accuracy for the energy decreases
in comparison to CCD0. Therefore, we will restrict our investigation
to the q-UCCD0 and q-UCCD0-full approaches.

For completeness, we have also combined q-UCCD0 and
q-UCCD0-fullAnsätzewith the OO described in Sec. II E 1. The cor-
responding methods are named q-oo-UCCD0 and q-oo-UCCD0-
full.

III. METHODS

A. VQE algorithm
The implementation of the q-UCC wavefunction Ansatz in

near-term quantum hardware requires the application of techniques
for the reduction of the circuit depth in such a way that the over-
all execution time of the algorithm does not exceed the coherence
time of the quantum computer. To this end, in addition to the meth-
ods introduced in Sec. II E, we will make use of precision-preserving
qubit-reduction schemes proposed in Refs. 52–54 via their imple-
mentation in the Qiskit software platform.55 In all our applications,
we use the VQE algorithm26 for the calculation of the ground state
energies according to the following steps:

(1) After setting the coordinates, charge, and spin multiplicity of
the molecule, we perform a RHF calculation in the minimal,
STO-3G basis set using the PySCF package.56

(2) The matrix elements �r|ĥ|s� and �rs|ĝ|tu� are then extracted
and used to construct the molecular Hamiltonian [Eq. (1)]
using the parity fermion-to-qubit mapping.48 Exploiting the
symmetries

[Ĥ, N̂↑] = [Ĥ, N̂↓] = 0, (17)

we can combine parity mapping with a two-qubit reduc-
tion (one of each Z2 symmetry of the Hamiltonian) with-
out modifying the lower part the energy spectrum (including
the ground state), as described in Ref. 52. [In Eq. (17), N̂σ
is the number operator for electrons of spin σ.] Finally, the
frozen-core approximation57 is employed to reduce the num-
ber of possible single and double excitations and the qubit
count.

(3) The qubits can be further tapered off52 by finding the under-
lying symmetries of the Hamiltonian and using graph-based
qubit encodings. The latter applies to the Hamiltonian, the
q-UCC operator, and the state vector. Further details of the
tapering procedure can be found in Appendix F.

(4) The trial wavefunction �Ψ(�θ)� is generated starting from the
HF state |Φ0� by applying the cluster operator Eq. (7) chosen
among the q-UCC Ansätze.
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(5) The system energy �Ψ(�θ)�Ĥ�Ψ(�θ)� is evaluated using the
state-vector simulator provided by Qiskit,55 which uses
a matrix representation of the operators in the Hilbert
space.

(6) Steps (4) and (5) are repeated until convergence using a classi-
cal optimizer. In all our simulations, we employ the Sequential
Least Squares Quadratic Programming (SLSQP)58 optimiza-
tion algorithm, which in our implementation performs in
terms of number of steps equally well as the L-BFGS-B opti-
mizer (shown28 to be among the best optimizers for VQE used
with the q-UCCSD Ansatz). In the first iteration, all ampli-
tudes �θ are initialized to a fixed value set to 0.1. In this work,
we do not start the optimization using better guesses such as
MP2 amplitudes. The convergence criterion for the energy is
set to 10−7.

Note that the calculation in step (5) can also be performed
through the sampling of the expectation value of the Hamiltonian
by repeated executions of the quantum circuit that encodes the trial
wavefunction. This approach will lead to the same ground state
energy as the state-vector simulation at a much larger computational
cost. All calculations are performed using the VQE algorithm and
the SLSQP optimizer as implemented in Qiskit.55

B. ooVQE algorithm
For the implementation of the OO approaches discussed in

Sec. II E 2, we modify the general framework of the VQE algorithm.
The one- and two-body integrals used to generate the Hamiltonian
matrix are modified according to

�r�˜̂h�s� =�
αβ

C∗arCbs�a�ĥ�b�, (18)

�pq�˜̂g�rs� = �
αβγθ

C∗apC∗bqCcrCds�ab�ĝ�cd�, (19)

with C = CRHFe−κ and κ is an anti-Hermitian matrix. The atomic
orbital (AO) to MO coefficient matrix is given by CRHF (where the
indices a, b, c and d label the AOs). In particular, we modify the fol-
lowing two steps in the conventional VQE to obtain the ooVQE
algorithm:

(2)∗ Extracted RHF integrals �r|ĥ|s� and �rs|ĝ|tu� undergo orbital
rotation using Eqs. (18) and (19).

(6)∗ In addition to amplitudes �θ, matrix elements �κ are intro-
duced into the optimization. Their initial value is arbitrarily
fixed at 10−3. At every update of the �κ vector by the opti-
mizer, the Hamiltonian matrix elements are reconstructed
using Eqs. (18) and (19).

From this point, the ooVQE algorithm proceeds unchanged
until convergence as for the conventional VQE approach. Note
that by construction, the Hamiltonians before and after the rota-
tion of the orbitals share the same energy spectrum due to uni-
tarity of applied orbital rotation. However, through the optimiza-
tion of the orbitals, we aim at minimizing the distance between
the exact wavefunction and the support specified by any q-UCC
Ansatz. A more detailed description of the algorithm is given in
Appendix B.

C. Classical electronic structure calculations
The CCSD calculations are performed using the PySCF pack-

age.56 For comparison, we also report results obtained using the
pair orbital-optimized Møller–Plesset method (pOMP2) and its ref-
erence OMP2 as implemented in Psi4.59,60 The implementation of
the pOMP2 approach follows closely the prescriptions described in
Refs. 41 and 42, where all the amplitudes with non-zero senior-
ity61 (the number of singly occupied orbitals in a determinant
or an orbital configuration), which are not associated with the
paired double excitations, are eliminated from MP2 Lagrangian
equations.

IV. RESULTS AND DISCUSSION

A. How different is q-UCCSD from its classical
UCCSD equivalent?

In Sec. II D as well as in Ref. 29, we pointed out that due to the
use of the Trotter approximation [Eq. (7)] with n = 1, the q-UCCSD
approach cannot be considered a one-to-one map of the original
corresponding classical algorithm, UCCSD. Despite this approxima-
tion, the q-UCCSD method can reproduce the correct ground state
energy when optimized with the VQE algorithm.

In this section, we investigate the evolution of UCCSD and
q-UCCSD variational parameters �θ and the corresponding wave-
function, �Ψ(�θ)�, for the case of the H4 molecule, a system that will
be further studied in Sec. IV B 1 to assess the quality of the q-UCCSD
approach and its approximations [q-(oo)-pUCCD, q-(oo)-UCCD0,
and q-(oo)-UCCD0-full].

Figure 2 shows the evolution of the most relevant varia-
tional parameters along the optimization path for both the exact
implementation of the q-UCCSD [with no Trotter approximation,
obtained by matrix exponentiation of the exact cluster operator

FIG. 2. Evolution of the most relevant VQE parameters for the H4 molecule during
optimization (STO-3G basis, eight qubits, four electrons, R = 1.735 Å, β = 85○)
using the SLSQP optimizer (tol = 10−7). The q-UCCSD results (solid line) are
compared with the ones obtained using the classical UCCSD approach (dashed
line), which is equivalent to the exact Trotter decomposition. The angle θmσnτ iσ jτ
corresponds to the excitation â†m,σ â†n,τ âj,σ âi,τ − â†i,τ â†j,σ ân,τ âm,σ .
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(T̂ − T̂†)] and the approximated algorithm [Trotter expansion with
n = 1, see Eq. (7)]. Despite the small differences in the paths fol-
lowed by the two approaches, the converged �θ values (Fig. 3, upper
panel) produce the same ground state wavefunction, characterized
by the same expansion coefficients cσmi and cστmnij defined in linearly
parameterized wavefunction

�Ψ(�c)� = ��1 +�mi,σ
cσmiâ

†
m,σ âi,σ + �

mnij,στ
cστmnijâ

†
m,σ â

†
n,τ âi,σ âj,τ

�
��Φ0�.

(20)

The weights of the first ten dominating configurations in Eq. (20)
contributing to the ground state wavefunction are shown in Fig. 3
(lower panel) for the “exact” UCCSD and q-UCCSD approaches.
The agreement is good with a maximal deviation of the order of
10−7. This analysis confirms the accuracy of the q-UCCSD approach
based on Eq. (7) within the VQE framework.

B. q-UCC for systems in the strongly correlated
regime

In the following, we will analyze the performance of the q-UCC
Ansätze described in Sec. II E within VQE and ooVQE algorithms
for a series of molecular systems and the periodic Fermi–Hubbard
model. A summary of all results is given in Table I.

In order to facilitate the comparison between the different
methods, we shifted all energy profiles to match the same reference
value at the equilibrium (i.e., the minimum energy) geometry. The
values of the shifts are also reported in Table I and in the legends of
Figs. 5–7.

As a measure of the quality of the dissociation/distortion pro-
files, we use the non-parallelity error (NPE)62,63 defined as the
difference between the maximum and minimum error, over the
entire energy profile, with respect to the exact diagonalization of the
Hamiltonian in the given basis set.

1. H4 molecule
The simplest molecule that exhibits a breakdown of the

standard CCSD method is H4 in its planar ring geometry
(Fig. 4). While unstable, this molecule was, nevertheless, exten-
sively used as a benchmark for different computational chemistry
methods.18,64

We analyze the energy profiles obtained by moving the four
hydrogen atoms in a concerted manner along the circumference
with radius R = 1.738 Å and with its center coinciding with the
center of H4. All geometries are obtained by varying the angle β
(Fig. 5) from 85○ to 95○, with β = 90○ corresponding to the square
geometry.
Along this path, the C4v symmetry of the β = 90○ geometry is
reduced to a C2v (β ≠ 90○) symmetry for all other points. This

FIG. 3. (Upper panel) Converged θmnij
parameters corresponding to the opti-
mization profiles in Fig. 2. The differ-
ences are due to the Trotter approxima-
tion used for q-UCCSD. (Lower panel)
Corresponding amplitudes in Eq. (20) for
the first ten dominant configurations (out
of 256) of the ground state wavefunction.
States |1�, . . ., |10� denote the electron
configurations |00001111�, |00110011�,
|00111100�, |01100110�, |01101001�,
|10010110�, |10011001�, |11000011�,
|11001100�, |11110000�, respectively.
[Spin-orbitals are ordered from lowest to
highest energies (left to right) with up
(down) spins in the even (odd) positions.]
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FIG. 4. Energy diagram for the 4 MOs of the H4 molecule in the STO-3G basis set
along the deformation profile parameterized by the angle β for R = 1.735 Å and
β ∈ [85○, 95○].

feature is particularly interesting as the configurations b2u and b3u
become degenerate (see Fig. 4) at the square geometry,65,66 which
is strongly correlated and described by two degenerate molecular
states.

Due to its small size (8 MOs using the STO-3G basis set) and
its interesting electronic structure properties, this system is ideal to
test the robustness of the different q-UCC-based approaches in the
neighborhood of a multi-configuration point (β = 90○).

Figure 4 depicts the changes of the MOs along the deformation
path described by the β angle, showing the origin of the degeneracy
at the square geometry.

In Fig. 5 (upper panel), we present the energy profiles computed
using the classical CCSD algorithm together with the ones obtained
using the quantum q-UCCSD, q-UCCD0, q-UCCD0-full, and
q-pUCCD wavefunction Ansätze (left-hand panel) and the corre-
sponding OO forms using the ooVQE algorithm (right-hand panel).
Due to the multi-reference character around the 90○-geometry, the
classical CCSD approach fails to predict the convexity of the exact
energy profile, which is qualitatively wrong with an energy mini-
mum at 90○ instead of a maximum. All profiles are shifted to match
the exact curve at β = 85○.

Concerning the approximated Ansätze, as expected, we observe
a larger up-shift of the curves in the order of 100 mhartree. How-
ever, the energy profiles are qualitatively in good agreement with the
exact curve in all cases, with the q-UCCD0 Ansatz reproducing the
correct profile within an error <2 mhartree (after the shift). The val-
ues of the applied shifts for all curves are given in the legend of Fig. 5
and are summarized in Table I, while the relative energy errors with
respect to the exact solution are reported in the lower panel. The
results obtained with the OO procedure described in Sec. II E 1 and
Appendix B together with the ooVQE algorithm are reported in the
right-hand panel of Fig. 5. We observe that for all OO approaches,
the absolute energy error reduces to values <4 mhartree compared
to the exact curve. In addition, all distortion profiles show the cor-
rect qualitative behavior with a maximum at the square geometry, in
contrast to the classical CCSD solution. The best results are obtained
for the q-oo-UCCD0-full, which gives a profile with a maximal
absolute deviation of 1.7 mhartree compared to the reference. How-
ever, note that the computationally efficient q-oo-pUCCD Ansatz,
which requires a substantially less number of two-qubit gates than
all other methods (see Table I), can reproduce qualitatively the

FIG. 5. (Upper panels) Energy profiles of the H4 molecule as a function of the internal angle β at R = 1.738 Å computed using different variants of the classical and quantum
CC approaches. All profiles are shifted to match the exact curve at β = 85○. The shifts in Hartree are reported within parentheses next to the acronyms labeling the different
approaches (see also Table I). (Lower panels) Absolute energy differences with respect to the exact profile (obtained with the exact diagonalization of the Hamiltonian). The
black dashed line corresponds to the chemical accuracy threshold at 1.6 mhartree.
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correct energy profile. The q-oo-UCCD0 Ansatz provides very sim-
ilar results to q-oo-pUCCD except for the error at the top of the
barrier at 90○, which reduces from 140% to 89%. We observe that
the OMP2 fails similarly to CCSD to describe the dissociation pro-
file but provides an improvement by reducing the cusp at the square
geometry. The restriction to pOMP2 partially mitigates the errors
of OMP2. However, the size of the barrier between 85○ and 95○ is
drastically overestimated.

2. H2O molecule
Similarly to H4, in the double dissociation of the watermolecule

by the simultaneous stretching of both OH bonds, there are two
equally weighted configurations that contribute to the ground state
wavefunction.18 However, in contrast to H4, the non-bonding elec-
tron configuration plays a more active role, making the calcu-
lation of the ground state energy more challenging for the CC
methods.

The energy profiles for the simultaneous stretching of the OH
bonds in the water molecule are shown on the left-hand side of
Fig. 6 for the CCSD, q-UCCSD, q-UCCD0, q-UCCD0-full, and q-
pUCCD methods together with the exact curve. The OH distance is
varied from the equilibrium value of d = 1.754 Å to the final value of
d = 2.393 Å at fixed angle α = 104.51○. The RHF/STO-3G calculation
produces 14 MOs among which 10 are occupied. The two 1s orbitals
of the oxygen atom are then replaced by the corresponding frozen
core potentials. Finally, the number of degrees of freedom is further
reduced to eight electrons in nine orbitals (i.e., qubits) by applying
tapering (see Sec. III) to the Hamiltonian in second quantization.

Note once more that all these operations do not affect the spectrum
of the original Hamiltonian.

The projective CCSD method breaks down for distances
d > 2 Å. In fact, we observe a non-physical barrier for re-binding
from large distances, which is not observed for the exact solu-
tion. In contrast, as for the case of H4, all quantum approaches
show qualitatively the right behavior, with the q-UCCSD method
approaching very closely (within chemical accuracy) the exact curve.
Note that all curves are shifted in order to match the initial point
at d = 1.754 Å. The values of the shifts are reported in the
legend and summarized in Table I. As expected, the limitations
applied to the possible excitations (singlet and pair) induce a siz-
able up-shift of the curves as for H4, the largest error obtained for
q-pUCCD. The lower panels of Fig. 6 report the relative energy
errors with respect to the exact solution for all methods. Both the
original q-UCCSD and the new q-UCCD0 Ansätze produce dis-
sociation curves close to chemical accuracy over the entire disso-
ciation profile. The absolute energies improve substantially when
the different approximations are applied together with OO, as
shown in the right panel of Fig. 6. In this case, the best results
are obtained for the q-oo-UCCD0 Ansatz, which gives a maximum
error of about 5.0 mhartree over the entire dissociation profile.
Most importantly, all approximations reproduce the correct qual-
itative monotonic behavior with similar NPE values (see Table I),
in contrast to the classical CCSD method, which is qualitatively
wrong.

Concerning the computational efficiency of the different
approaches, both q-UCCD0 and q-pUCCD require approximately
half of the excitations needed for the full q-UCCSD Ansatz

FIG. 6. (Upper panels) Double dissociation profiles for H2O computed with different q-UCC Ansätze (see legend) at fixed α = 104.51○. All profiles are shifted to match the
exact curve at a OH distance of d = 1.754 Å (see text). The shifts in Hartree are reported within parentheses next to the acronyms labeling the different approaches (see also
Table I). (Lower panels) Absolute energy differences with respect to the exact profile (obtained upon diagonalization of the Hamiltonian). The black dashed line corresponds
to the chemical accuracy threshold at 1.6 mhartree.
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(see Table I for a detailed account). The optimization using the
q-UCCD0-full Ansatz reduces the energy shift compared to
q-UCCD0 at the cost of increasing the number of gates (Table I).

The corresponding number of single- and two-qubit gates
required for the implementation of these approaches follows the
same trend, making the orbital-optimized pair Ansatz (q-oo-
pUCCD) the favorable solution that maximizes the accuracy/cost
ratio. It is also important to stress that numerically the q-pUCCD
and q-oo-pUCCD approaches need only one third of the total num-
ber of energy evaluations to achieve energy convergence using VQE
with the SLSQP optimizer.

3. N2 molecule

The nitrogen molecule is one of the most severe test cases for
single-reference electronic structure approaches due to the strong
correlation character associated with the stretching of the triple
bond. Unlike the cases of the H4 and the H2O molecules, this sys-
tem contains six active p electrons contributing to the bond giving
rise to multiple equally weighted configurations at the dissociation
limit.

Using the STO-3G basis set, we can describe the N2 molecule
with 14 electrons in 20 spin-orbitals. Using the frozen-core approx-
imation, we further reduce the number of electrons and MOs by
4. Finally, by applying tapering, the problem size is reduced to 10
electrons in 12 orbitals, which maps to a quantum register with 12
qubits.

Figure 7 shows the energy dissociation curves obtained upon
stretching the N2 bond length d from 1 Å to 3 Å. The classical CCSD

Ansatz fails to reproduce the correct dissociation profile for
d > 1.75 Å. At these distances, the near-degenerate states acquire
symmetry instabilities, which leads to a dramatic failure of the
method. In fact, the energy, instead of asymptotically increasing,
drops to a value comparable to the one of the equilibrium dis-
tance. The overall profile is therefore qualitatively wrong, showing
a recombination barrier of the same size of the dissociation one. In
order to overcome this problem, several “corrections” to the original
CCSDAnsatz have been proposed in the literature such as the CCD0
approach.19 However, while curing at least qualitatively the dissoci-
ation profile, the discrepancy with the exact solution remains very
large.

On the other hand, all the q-UCC can reproduce at least qual-
itatively the correct dissociation profile. The q-UCCSD curve lies
within 2 mhartree in energy from the reference over the entire dis-
tance range (Fig. 7, lower left-hand panel). Among the approximated
q-UCCSD approaches, q-UCCD0 is the one that provides the best
results in terms of average error (Fig. 7), NPE, and asymptotic behav-
ior (Table I). However, the overall energy shifts applied in order to
match all energy at the equilibrium bond length remain relatively
large (between 20 mhartree and 80 mhartree). When applying OO,
the picture does not change substantially. q-oo-UCCD0 remains
the more accurate wavefunction Ansatz and leads to only a minor
improvement in absolute energy compared to q-UCCD0. Interest-
ingly, as for the other molecules in our study set (namely, H4 and
H2O), the q-oo-pUCCD method produces a qualitatively correct
profile with a maximal deviation from the reference of about 80
mhartree and a NPE of 65 mhartree. For comparison, in the right
panel of Fig. 7, we also report the results obtained using OMP2

FIG. 7. (Upper panels) Energy profiles of the N2 molecule as a function of the bond length d computed using different variants of the classical and quantum CC approaches.
All profiles are shifted to match the exact curve at d = 1.2 Å. The shifts in Hartree are reported within parentheses next to the acronyms labeling the different approaches
(see also Table I). (Lower panels) Absolute energy differences with respect to the exact profile (obtained upon diagonalization of the Hamiltonian). The black dashed line
corresponds to the chemical accuracy threshold at 1.6 mhartree.
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and pOMP2. Note that for distances close to 1 Å (see Fig. 7), the
discrepancy between the q-UCCD0 and the exact results is relatively
large, which directly reflects in the large NPE (60 mhartree). On
the other hand, when computed for distances larger than 1.2 Å, the
q-UCCD0 Ansatz produces smaller NPE than q-UCCSD, indicating
that this solution is to be preferred for stretched geometries (strongly
correlated regime).

Also in this case, all OO approaches maintain or improve
their efficiency (i.e., reducing the absolute error) compared to
their reference (non-OO) approaches. The origin of the increase
of the NPE using the q-oo-UCCD0 (observed for H4 and N2) and
q-oo-UCCD0-full (in the case of H2O) may be associated with the
disruption of the balance among the double excitations introduced
in the q-UCCD0 and q-UCCD0-full Ansätze with the purpose of
improving the solution in the strongly correlated regime. In fact, OO
modifies the nature of the orbitals and introduces (effective) single
excitations (see Appendix B), making, therefore, the interpretation
of the q-UCCD0 and q-UCCD0-full Ansätze less evident. Further-
more, the addition of new degrees of freedom, i.e., the parame-
ters used to define the orbital rotation matrix κ, introduces more
complexity in the energy landscape (adding further local minima),
hampering the numerical convergence toward the global energy
minimum. In conclusion, while the addition of the OO can clearly
improve the total energy (by offering more degrees of freedom),
the combination with the UCCD0 and q-UCCD0-full Ansätze may
actually increase the NPE.

4. Hubbard model
In this last application, we turn our attention to the investiga-

tion of a prototypical strongly correlated periodic system described
by the one dimensional Fermi–Hubbard Hamiltonian given in
Eq. (2). Thismodel was originally designed to study strong electronic
interaction in narrow energy band materials.67

The inset of Fig. 8 shows the 6-site Fermi–Hubbard model used
in this study. The line connecting the first with the last site indi-
cates the periodicity of the system. Here, we restrict our analysis to
the half-filling (six electrons in N = 6 sites) scenario [see Eq. (2)],
which gives rise to a number of degenerate states close to the ground
state solution. The implementation of the model in the qubit reg-
ister is done by assigning two qubits for each site, one for spin-up
and one for spin-down electrons. No qubit count reduction schemes
such as tapering have been used in this case due to the absence of the
required symmetries in the Hamiltonian.

Interestingly, by increasing the ratio |U/t| in the Fermi–
Hubbard model, we can control the transition toward a regime of
strongly correlated electrons dominated by the two-body Coulomb
repulsive term. In Fig. 8, we monitor this transition by sweeping
the interaction parameter U from 0 to 12 while keeping t fix to the
value −1.

In the following study, we investigate the variational ground
state solution within the subspace with total spin S = 0 (three spin-up
and three spin-down electrons) of the full Hilbert space. This means
that we do not allow for spin-flip excitations while the initial state is
prepared in the S = 0 subspace. For the Hubbard model, the use of
“generalized” excitations (see Refs. 36 and 49) in the definition of the
q-UCCSD Ansatz did not bring any significant advantage. There-
fore, only “standard” single excitations are used for computational
efficiency (i.e., to limit the number of variational parameters). Note

FIG. 8. (Upper panel) Ground state energy (in units of electron hopping term t)
for the periodic one-dimensional Fermi–Hubbard chain at half-filling as a func-
tion of the interaction energy U at fixed t = −1 [see Eq. (2)]. The different lines
correspond to different classical and quantum wavefunction Ansätze (see the leg-
end). The exact curve corresponds to the lowest eigenvalue of the corresponding
Hamiltonian. (Lower panel) Absolute energy differences with respect to the exact
diagonalization profile. The black dashed line corresponds to zero energy.

that the presence of a repulsive U term in the Hamiltonian favors
electronic configuration with only one electron per site. Therefore,
the action of the single excitation operators is particularly important
in the Hubbard model, and they will be considered explicitly also in
the case of the q-pUCCD Ansatz. As explained in Sec. II E 1 and
Appendix B, this will replace the use of OO.

As expected, the CCSD Ansatz breaks down as soon as the
multi-reference character starts dominating the ground state wave-
function at −U/t > 4. On the other hand, all quantum models
including the approximated ones (i.e., q-UCCSD0 and q-pUCCSD)
can reproduce, at least qualitatively, the correct asymptotic behav-
ior, in agreement with the exact solution. Also in this case,
the full q-UCCSD method performs better than q-UCCSD0 and
q-pUCCSD, as confirmed by the error plots in the lower panel
of Fig. 8.

In contrast to the classical projective CC method where the
modified CCD0 and pCCD approximations were introduced to cure
failures of the original CCSD Ansatz, in the quantum case, the
approximated q-UCCSD0 and q-pUCCSDmethods do not improve
the accuracy of the solution. However, while less accurate, they pro-
vide a qualitatively correct description of the system at a much
lower computational cost. As shown in Table I, the number of total
iterations and energy evaluations are systematically reduced when
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going from the original q-UCCSD approach to the approximated
q-UCCSD0 and q-pUCCSD methods.

V. CONCLUSION
Coupled Cluster (CC) is a single-reference post-Hartree–Fock

wavefunction approach capable of reproducing accurate electronic
structure properties within chemical accuracy for many molecular
systems. However, in its projective formulation, CC is known to
fail when dealing with strongly correlated systems dominated by
static correlation. In this case, multi-reference extensions of the CC
Ansatz are required (MRCC) with a corresponding increase in the
computational costs.

In this article, we showed that the variants of the quantum
unitary CC method (named q-UCC), obtained from the transposi-
tion of the classical UCC Ansatz, can produce qualitatively correct
energy profiles also in the strongly correlated regime. In partic-
ular, we focused our study on the investigation of the properties
of the q-UCCSD Ansatz for which the CC expansion is trun-
cated to single and double excitations. The quantum algorithm is
obtained by encoding the UCCSD Ansatz as a series of param-
eterized qubit operations in a quantum register using a trotter-
ization of the cluster operator eT̂(�θ)−T̂†(�θ) [see Eq. (7)], where
T̂ is the excitation operator. The main reason for the success
of this algorithm lies in its variational nature, which enables us
to recover from several shortcomings of the projective CCSD
method, including the capability to deal with strongly correlated
systems.

To demonstrate the quality of the q-UCCSD predictions,
we computed the energy profiles for a series of molecular sys-
tems along reaction paths that lead to the stretching of one or
more bonds. In this way, we were able to monitor the accuracy
of the q-UCCSD Ansatz in both the equilibrium (single refer-
ence) regime and the dissociative (multi-reference and strongly
correlated) limit. For all investigated systems, the molecules H4,
H2O, and N2, and the one-dimensional Fermi–Hubbard chain,
we obtained accurate results that outperform the classical projec-
tive CCSD method. In particular, all our simulations showed the
correct qualitative dissociation profiles, and in most cases (with
the only exception of a few points in the dissociation of N2), the
energy differences with the reference curves were within chem-
ical accuracy (i.e., <1.6 mhartree) over the entire dissociation
profile.

Moreover, we extended our investigation to the analyses of
approximated q-UCCSD Ansätze for which the number of possi-
ble one- and two-electron excitations has been limited in order to
reduce the total number of gate operations and the correspond-
ing variational parameters to optimize. This is an important pre-
requisite in view of the possible future implementation of these
approaches in near-term quantum computers. To this end, we
explored two main reduction schemes, which limit the nature of
the double excitations to a subset of all possible ones. The sin-
glet and the pair q-UCCD approaches (named q-UCCD0 and
q-pUCCD, respectively) and their corresponding orbital-optimized
versions (which were already proposed as alternatives to projec-
tive CCSD) showed interesting results for all tested systems, in
qualitative agreement with the corresponding reference curves. In

particular, orbital optimization restores a significant fraction of
the correct absolute value of the total energy at the chosen refer-
ence geometries while reproducing, at least qualitatively, the correct
energy profiles within 10–20 mhartree accuracy from the reference
calculations. More importantly for the future of near-term quantum
computing, these results are achieved using a fraction (e.g., between
2/3 for H4 and 1/4 for H2O in the case of the q-oo-pUCCD Ansatz)
of the number of two-qubit gates required for the original q-UCCSD
approach. Further investigations are needed to enable the efficient
implementation of q-UCCSD approaches in near-term quantum
devices.46,68,69

In conclusion, we demonstrated the potential of the q-UCCSD
Ansatz (for VQE) and the advantages with respect to the classi-
cal equivalent (projective CCSD), especially in the description of
systems with strong electronic correlation. Finally, the variational
nature of the VQE and ooVQE algorithms in combination with
the approximations of the q-UCCSD Ansatz discussed in this work
can open up new possibilities for the solution of electronic struc-
ture problems (also in the strongly correlated regime) of medium
to large molecular systems using shallow circuits in near-term noisy
quantum computers.
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APPENDIX A: MOLECULAR INTEGRALS
The coefficients of the Hamiltonian in Eq. (1) are given by one-

electron integrals defined in physics notation on molecular orbital
basis as

�r�ĥ�s� = � dr1 ϕ∗r (r1)�−12∇2
r1 − M�

I=1
ZI

R1I
�ϕs(r1) (A1)

and similarly for the two-electron terms given by

�rs�ĝ�tu� = � dr1dr2 ϕ∗r (r1)ϕ∗s (r2) 1
r12

ϕt(r1)ϕu(r2), (A2)

where ZI is the nuclear charge of atom I, R1I = |RI − r1|, and
r12 = |r1 − r2|.
APPENDIX B: ORBITAL ROTATIONS

Orbital rotations can be defined by means of a unitary transfor-
mation R acting on the orbitals in first quantization

ϕ′r(r) =�
s
Rrs ϕs(r), (B1)

where the R can be written in terms of an anti-Hermitian matrix κ,
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FIG. 9. Computation of the ground state of the H4 molecule at the geometry corresponding to R = 1.738 Å, β = 85○ using the q-(oo-)pUCCD Ansatz and the ooVQE algorithm.
(a) Evolution of the energy during the execution of the ooVQE algorithm. The dashed line corresponds to the optimized energy obtained without OO. (b) Evolution of the
elements of the �θ vector associated with double excitations during optimization. (c) Evolution of the elements of the �κ vector associated with the rotation matrix for the MO
during optimization. (d) Absolute values of the elements of the rotation matrix C [Eqs. (B5) and (B6)] before (C = CRHF, left) and after convergence (C = CRHF e−κ, right). (e)
Same as in (d) but for the absolute value of the elements of the anti-Hermitian matrix κ (see Appendix B). (f) Representation of the initial and optimized MOs obtained after
applying the ooVQE algorithm.
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R = exp (−κ) (B2)

with κ† = −κ. Therefore, the orbital rotation can be applied to one-/
two-electron integrals by means of a basis change

�r�˜̂h�s� =�
ab

Cα,∗
ar Cα

bs�a�ĥ�b�, (B3)

�pq�˜̂g�rs� = �
abcd

Cα,∗
ap Cα,∗

bq Cα
crC

α
ds�ab�ĝ�cd�, (B4)

where a, b, c, d label the AOs and p, q, r, s label theMOs. By acting on
AO-to-MO coefficient matrices Cα and Cβ with matrix R, we obtain
in the RHF case

Cα = Cα
RHF exp (−κα), (B5)

Cβ = Cβ
RHF exp (−κβ). (B6)

This transformation preserves orthonormality due to unitarity of R.
In addition, the RHF orbtials are real and the spin-restriction forces
κ = κα = κβ, which implies Cα = Cβ.

The same transformation can be equivalently applied to the cre-
ation and annihilation operators (for second quantization, see Sec.
3.2 of Ref. 7)

˜̂ar = exp (−κ̂)âr exp (κ̂) =�
s
R∗srâs, (B7)

˜̂a†
r = exp (−κ̂)â†

r exp (κ̂) =�
s
Rsrâ†

s , (B8)

where we introduced the anti-Hermitian operator

κ̂ =�
rs
κrsâ†

r âs. (B9)

We can therefore write the Hamiltonian on the rotated orbital
basis as

Ĥ′ =�
rs
�r�˜̂h�s� â†

r âs +
1
2�rstu�rs�˜̂g�tu� â

†
r â

†
s âuât + ENN . (B10)

We arrive at the conclusion that applying the rotation to the
orbitals in first quantization is equivalent to applying the following
transformation to the Hamiltonian in second quantization,

Ĥ → Ĥ′ = exp (−κ̂)Ĥ exp (κ̂), (B11)

which can be also associated with

Ĥ → Ĥ′ = exp (−(T̂1 − T̂†
1))Ĥ exp (T̂1 − T̂†

1) (B12)

for a generalized single excitation T̂1 operator (all possible excita-
tions are allowed). By construction, both Hamiltonians Ĥ and Ĥ′
share the same spectrum. Therefore, thanks to the optimization of
orbitals through rotations, we aim for a maximal overlap of the exact
solution with the support specified by the selected wavefunction
Ansatz.

APPENDIX C: EFFECT OF THE ORBITAL
OPTIMIZATION ON THE MOS

As an example of the implementation of the OO approach
described in Sec. III, we take the H4 molecule at the geometry
corresponding to R = 1.738 Å and β = 85○.

Figure 9 reports the time evolution of the optimization param-
eters (�θ,�κ) using the ooVQE algorithm. We observe that while the
energy of the system is converging [panel (a)], both the CC vari-
ational parameters [panel (b)] and the orbital rotation matrix ele-
ments [panel (c)] are stabilizing on plateau values. The steps and
spikes in the different profiles are induced by re-settings of the
classical optimization algorithm.

The initial and final values of the elements of the rotation
matrix C [Eqs. (B5) and (B6)] are given in panel (d) from left
to right. The equivalent plot for the absolute value of the ele-
ments of the anti-Hermitian matrix κ is reported in panel (e).
We observe that the action of the OO procedure changes sub-
stantially the symmetry of matrices introducing a 2 × 2 block
structure.

APPENDIX D: EFFECT OF TAPERING OFF QUBITS
ON REQUIRED QUANTUM RESOURCES

In Table II, we report the number of qubits and quantum
gates used when employing tapering52 for the H4, H2O, and the N2
molecules.

TABLE II. Number of qubits and quantum gates for the different q-UCC Ansätze after tapering off qubits. Description of
the abbreviations—Hub.: Hubbard; No.: number; SQG: single qubit gates, u1, u2, and u3 corresponding to one-, two-, and
three-parameters one-qubit gates (details are presented in Ref. 55); TQG: two-qubit gates, CNOT gates.

q-UCCSD q-UCCD0 q-pUCCD q-UCCD0-full

H4 (5 qubits) No. SQG 64/204/185 64/236/189 24/92/77 112/440/345
No. TQG 364 404 156 728

H2O (9 qubits) No. SQG 376/2344/1339 240/1068/916 80/816/310 496/3824/1843
No. TQG 11932 3000 1168 6048

N2 (12 qubits) No. SQG 780/6432/3057 720/6272/3910 120/1456/471 1800/16400/10246
No. TQG 9200 11792 2032 30160
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APPENDIX E: EXAMPLE OF QUANTUM SINGLET UCCD
(q-UCCD0) AND QUANTUM SINGLET FULL UCCD
(q-UCCD0-FULL)

To clarify the difference between the q-UCCD0 and q-UCCD0-
full Ansätze, we consider the simplest non-trivial case of two elec-
trons in six MOs (i.e., three spatial orbitals with 0th being doubly
occupied and 1st and 2nd being virtual). In this setting, the singlet
double excitation operator [Eq. (11a)] becomes

T̂0
2(�α) = 2α1100 (â†

1,↓â†
1,↑â0,↓â0,↑) + (α1200 + α2100)

× (â†
1,↓â†

2,↑â0,↓â0,↑ + â†
2,↓â†

1,↑â0,↓â0,↑)
+2α2200 (â†

2,↓â†
2,↑â0,↓â0,↑). (E1)

The symmetries of the T̂0
2 tensor can be exhibited by considering

independent amplitudes for each excitation (e.g., θ1↓2↑0↓0↑ corre-
sponding to â†

1,↓â†
2,↑â0,↓â0,↑) in Eq. (E1), which reads

T̂0
2(�θ) = 2θ1↓1↑0↓0↑ (â†

1,↓â†
1,↑â0,↓â0,↑) + θ1↓2↑0↓0↑â†

1,↓â†
2,↑â0,↓â0,↑

+ θ2↓1↑0↓0↑ â
†
2,↓â†

1,↑â0,↓â0,↑ + 2θ2↓2↑0↓0↑ (â†
2,↓â†

2,↑â0,↓â0,↑).
(E2)

This allows us to identify the coefficients as (α1200 + α2100)�2= θ1↓2↑0↓0↑ = θ2↓1↑0↓0↑ . Using this relation, we can simplify Eq. (E2)
by absorbing the scalars with the amplitudes. As a consequence,
Eq. (E2) becomes

T̂0
2(�θ) = θ1↓1↑0↓0↑ â†

1,↓â†
1,↑â0,↓â0,↑ + θ1↓2↑0↓0↑�â†

1,↓â†
2,↑â0,↓â0,↑

+ â†
2,↓â†

1,↑â0,↓â0,↑� + θ2↓2↑0↓0↑ â
†
2,↓â†

2,↑â0,↓â0,↑. (E3)

Note that in this way, we achieved a reduction of the number of
amplitudes from 4 [Eq. (E2)] to 3 [Eq. (E3)].

Furthermore, as the MOs involved in the double excitations
â†
1,↓â†

2,↑â0,↓â0,↑ and â†
2,↓â†

1,↑â0,↓â0,↑ are identical within the RHF frame-
work, we can further reduce the number of excitations (and there-
fore quantum gates) by considering explicitly only one of the two,
e.g., â†

2,↓â†
1,↑â0,↓â0,↑. Consequently, we can defined the reduced T̂0

2
operator as

T̂0,Ω
2 (�θ) = θ1↓1↑0↓0↑ â†

1,↓â†
1,↑â0,↓â0,↑ + θ1↓2↑0↓0↑â†

1,↓â†
2,↑â0,↓â0,↑

+ θ2↓2↑0↓0↑ â
†
2,↓â†

2,↑â0,↓â0,↑. (E4)

Note that due to the four-fold symmetry in the T̂0
2 tensor [Eq. (12)],

we can at most eliminate 3 excitations out of 4. In order to
provide physical insight into this procedure, we also consider
the energy contribution associated with each individual excita-
tion t̂ ∈ {â†

m,σ â†
n,τ âi,σ âj,τ} by minimizing the total energy E(θ)

= �Φ0�eθ(t̂†2 −t̂2)Ĥeθ(t̂2−t̂†2 )�Φ0�. In Table III, we report the results
in the case of H2 molecule in the 6-31G basis set. In general, the
optimized energies for the different subsets are different. However,
within each subset, each excitation contributes identically to the
energy, which motivates our choice of keeping only one of the two
(with adapted weight).

Finally, the q-UCCD0 or q-UCCD0-full wavefunction Ansätze
can be constructed by substitution of the cluster operators T̂0,Ω

2
[Eq. (E4)], respectively, T̂0

2 [Eq. (E3)] into Eq. (7).

TABLE III. Double excitation operators entering the definition of T̂0
2 for the case of the

H2 molecule in the 6-31G basis set (NMO = 8). The excitations are grouped into two
types: paired and singlet. For each excitation, we consider a unique q-UCCD Ansatz

(e.g., eθ1↓1↑0↓0↑ (â†1,↓ â†1,↑ â0,↓ â0,↑−â†0,↑ â†0,↓ â1,↑ â1,↓)�Φ0� for the first row of this table) and
report the minimized energy corresponding to a bond distance of 0.546 Å using the
VQE algorithm. The paired subset is constituted by double excitations that involve
only two spatial orbitals (see Fig. 1). The remaining double excitations can be orga-
nized in groups of two excitations according to the symmetries given in Eq. (12). Each
pair produces exactly the same energy.

Subset type Excitation Energy (hartree)

Paired â†
1,↓â†

1,↑â0,↓â0,↑ −1.090
Paired â†

2,↓â†
2,↑â0,↓â0,↑ −1.094

Paired â†
3,↓â†

3,↑â0,↓â0,↑ −1.095
Singlet â†

2,↓â†
1,↑â0,↓â0,↑ −1.088

â†
1,↓â†

2,↑â0,↓â0,↑ −1.088
Singlet â†

3,↓â†
1,↑â0,↓â0,↑ −1.090

â†
1,↓â†

3,↑â0,↓â0,↑ −1.090
Singlet â†

2,↓â†
3,↑â0,↓â0,↑ −1.088

â†
3,↓â†

2,↑â0,↓â0,↑ −1.088

APPENDIX F: TAPERING OFF QUBITS
IN A FERMIONIC HAMILTONIAN

In this section, we give a summary of the tapering off qubits
procedure described in the original work by Bravyi et al.52

We consider a generic fermionic M-qubit Hamiltonian
obtained after applying the Jordan–Wigner transformation,

Ĥq =�
i
hiσ̂i, (F1)

where σ̂i areM-qubit Pauli strings belonging to the set

PM = ±{Î, σ̂x, σ̂y, σ̂z}⊗M . (F2)

The M-qubit Clifford group, C, is defined as the set of unitary
operators, Û, such that

Ûσ̂Û† ∈ PM (F3)

for all σ̂ ∈ PM .
We define a symmetry group S ∈ PM of a Hamiltonian Ĥq as

the set of operations (excluding −Î) that commute with each Pauli
string in Ĥq. It was shown70 that for any Abelian group S ⊆ PM
with −Î ∉ S, there is a set of independent generators τ̂1, . . . , τ̂k such
that

τ̂i = Ûσ̂xi Û†, i = 1, . . . , k, (F4)
for some Clifford unitary operator Û ∈ PM . Note that we arrange the
qubits in such a way that the symmetry operations apply to the first
k qubits.

The transformed Hamiltonian becomes

Ĥ′q = Û†ĤqÛ =�
j
hjη̂j (F5)

with η̂j = Û†σ̂jÛ ∈ PM .
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By construction, the two Hamiltonians Ĥq and Ĥ′q are isospec-
tral. However, by exploiting the commutation relations among the
Pauli strings σ̂i and η̂j, it is possible to replace operators (more
specifically Î and σ̂x operators) within the first k positions of the η̂
Pauli string with their corresponding eigenvalues achieving an effec-
tive reduction in the number of qubits. Following closely Ref. 52,
since [τ̂i, σ̂j] = 0 for all i, j, one has [σ̂xi , η̂j] = 0 for all i, j. This implies
that all terms in Ĥ′q must commute with the σ̂xi operators (with i ≤
k) in each Pauli string η̂j or equivalently that the first k terms of each
Pauli string η̂j that appear in Ĥ′q are ∈ {Î, σ̂x}. When looking for
the ground energy of Ĥ′q using a variational approach such as VQE,
one can therefore replace in the Pauli strings the σx1 , . . . , σxk opera-
tors by their eigenvalues ±1 and remove the first k qubits of the qubit
register.

For more details about the theory and the implementation of
this procedure, the interested reader is invited to read the original
paper of Bravyi et al.52
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