
Parallelization of Classical Numerical Optimization
in Quantum Variational Algorithms

Marco Pistoia
JPMorgan Chase & Co.

marco.pistoia@jpmchase.com

Peng Liu
Google

liupen@google.com

Chun Fu (Richard) Chen
IBM Research

chenrich@us.ibm.com

Shaohan Hu
IBM Research

shaohan.hu@ibm.com

Stephen Wood
IBM Research

woodsp@us.ibm.com

Abstract—Numerical optimization has been extensively used
in many real-world applications related to Scientific Computing,
Artificial Intelligence and, more recently, Quantum Computing.
However, existing optimizers conduct their internal computations
sequentially, which affects their performance. We observed a
general pattern that enabled us to parallelize such internal com-
putations and achieve significant speedup. We designed a novel
parallelization algorithm for optimizers, which consists of pattern
detection, prediction, precomputation, and caching. Importantly,
our design does not require any change to the optimizers. Instead,
it simply modifies the function to be optimized, thereby leading to
several engineering advantages, including simplicity, modularity
and portability. We implemented this solution and included it in
the Qiskit Aqua open-source project. In this paper, we present
an evaluation on both standard benchmarks and real-world
quantum-computing applications. The evaluation results confirm
that our approach (1) incurs negligible overhead, (2) effectively
speeds up optimization, and (3) does not affect the accuracy of
the results or the convergence of the optimizers.

Index Terms—Numerical optimization, Parallelization, Quan-
tum Computing, Variational Algorithms

I. INTRODUCTION

Software engineers from the Scientific Computing, Quan-
tum Computing and Machine Learning areas heavily rely
on numerical optimization to solve numerous domain-specific
problems. Given a function f(x1, x2, . . . , xn) that takes n
parameters, numerical optimization finds the minimum or
maximum function value and the corresponding parameter
values, depending on whether the objective of the optimization
is minimization or maximization, respectively. Without loss of
generality, in this paper we will refer only to the minimiza-
tion problem, since maximization can be easily reduced to
minimization. Putting it more precisely, given f : A 7→ R,
where A ⊆ Rn, the objective of optimization is to compute
the following:

argmin
x1,...,xn

f(x1, x2, . . . , xn)

We use the vector notation ~x to compactly denote the
parameters [x1, x2, . . . , xn]. We may also indicate a vector
as a point. We refer to the function to be minimized as the
target function.

Many optimizers have been designed, implemented and
made available in popular libraries, such as SciPy [38]. These
optimizers meet the following two general applicability con-
ditions:

1) They do not assume that the target function f can be
expressed in analytic form, which could be efficiently
handled by specialized solvers [14], [19].

2) They do not assume that the derivatives or the gradient
of f can be expressed in analytic form.

Note that the partial derivatives

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

are basically the projections of the gradient ∇f(~x) along the
different dimensions of Rn. We refer to a function f such that
neither f nor its derivatives can be expressed in analytic form
as a black-box function.

A. Real-world Scenarios

Blackbox functions commonly exist in the real world and
play an important role. In fact, most functions that involve
feedback from the real-world environment are black-box func-
tions. For example:

• Reinforcement Learning provides intelligent control to
a wide range of applications, including robotic control
and game AI. At the core of RL is the value function,
which needs to be maximized by updating the control
parameters. However, the value function is computation-
ally intractable [40], and consequently does not have the
analytic form, because it depends on the feedback from
the environment.

• Scientific Computing includes many interesting problems,
such as the ground-state energy of molecules,, which
can be computed by minimizing the functions related
to the dynamics of the molecules. These are described
by the Schrödinger equations, most of which do not
have analytic solutions [37]. Accordingly, the functions
involved cannot be expressed in analytic forms.

• Quantum Computing is of particular interest when it
comes to hybrid quantum/classical algorithms, such as
the Variational Quantum Eigensolver [32] and the Quan-
tum Approximate Optimization Algorithm [17], which
interleave quantum computations and classical executions
of numerical optimization routines. For such algorithms,
the efficiency and of the classical optimization is crucial
for maintaining the performance benefits of Quantum
Computing.

309

2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)

978-1-7281-5778-8/20/$31.00 ©2020 IEEE
DOI 10.1109/ICST46399.2020.00039

• Hyperparameter Optimization is used for tuning software
systems. For neural networks, hyperparameter optimiza-
tion tunes the hyperparameters, such as the number of
neurons in each layer, to obtain the best model accuracy.
However, the relation between the accuracy and the
number of neurons is rather complex and cannot be put
into analytic form. Similarly, in the Spark system [39],
hyperparameter optimization tunes the configurations to
obtain the best performance, but the relation between the
performance and the configurations cannot be expressed
in analytic form.

B. Problem

Given a function f(~x), which may be a black-box function,
the optimizer evaluates a sequence of points to search for
the minimum value. During the search, the evaluation results
of the previous points affect the choice of the point to be
evaluated next. Such choice is optimizer-specific.

Regardless of the differences between the optimizers, we
make a general observation: many optimizers rely on the
gradient information. Since the analytic form of the gradient
may be unavailable, optimizers approximate the gradient using
numerical differentiation. Each entry in the gradient vector is
the derivative along one dimension, as follows:

∇f(~x) =
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]
.

Let ~u1, ~u2, . . . , ~un denote the unit vectors along the n
dimensions. The derivative along each dimension is approxi-
mated using the numerical differentiation as:

∂f

∂xi
≈ f(~x+ α~ui)− f(~x)

α

Clearly, the optimizer needs to evaluate f(~x + α~ui), in
addition to f(~x). Overall, to approximate the gradient ∇f(~x)
at point ~x, the optimizer needs to evaluate the n neighboring
points around ~x, which are f(~x+ α~ui) for i = 1, 2, . . . n.

Fig. 1: Illustration of the Optimization Logic

Figure 1 illustrates this observation. At point ~x, with di-
mension 8, the optimizer evaluates ~x and its 8 neighbors to

approximate the gradient. Then, following some internal logic
that determines the direction to move towards and the step
size, the optimizer moves to the next point ~x′. Again, it needs
to evaluate the 8 neighbors of ~x′ in addition to ~x′ itself. These
steps are performed iteratively by the optimizer.

C. Practical Challenges
Each evaluation may be very slow. Consider the hyper-

parameter optimization of a neural network; each evaluation
takes a specific hyperparameter configuration and performs
the full evaluation (including training and testing) to obtain
the accuracy. Furthermore, the optimizer may need to evaluate
many neighbors of point ~x if the dimension is high. This is
especially true given when such functions relate to modern
computing (e.g., scientific computing, AI and modern software
systems), and so depend on many parameters. For example,
the Spark system depends on hundreds of parameters [39].

Unfortunately, the optimizers evaluate the large number of
neighbors sequentially, thereby imposing a severe performance
bottleneck. A natural idea to speed up the optimization is to
evaluate the neighbors in parallel, since they are independent
of each other. One may wish to modify the optimizers so
that they could perform their evaluations in parallel. However,
several practical software-engineering challenges make this
choice highly impractical. First, changing the code of an op-
timizer requires deep understanding of the optimization logic,
or subtle bugs may be introduced. The optimization logic
is very complex as heavily utilizes mathematics principles
and notations (e.g., the Hessian matrix [11]), which are very
likely beyond a software developer’s skill set. Even worse, the
code may be written in the old Fortran style, which further
complicates any code change. For instance, the optimizers in
SciPy [38], which are widely used [41], wrap legacy Fortran
code in a Python wrapper. To the best of our knowledge, no
existing publicly available optimizers [13], [28], [31], [38]
support parallel evaluations of the neighbors. 1 Second, a
change in one optimizer does not generally apply to other
optimizers. When developers switch to a new optimizer, they
need to start over to figure out the changes required.

D. Our Solution
We propose a parallelization approach based on the obser-

vation of a general pattern: Each neighbor ~x+α~ui of ~x shares
the same values with ~x at all entries, except for the ith entry.
Besides, the difference at the ith entry is α, which is fixed
across all the neighbors as computed internally by the opti-
mizer. This observation lays the ground for our parallelization
approach: We detect the pattern when the first neighbor is
about to be evaluated and predict all the neighbors, which
we then evaluate in parallel. We perform the parallelization
by wrapping the target function within our run-time logic.
Importantly, this design does not require any change to the
optimizer, which we shall elaborate soon.

1We have downloaded and studied five sets of optimizers, including the
popular ones, such as SciPy [38], NLOpt [28], pyOpt [31] and RBFOpt [13].
Note that the parallel support in RBFOpt is not about the parallel evaluation
of the neighbors.

310

Cache

optimizer parallelized	 version

Fig. 2: Parallelization

1) Add-on Run-time Logic: Figure 2 illustrates our paral-
lelization technique. On the left, it shows the original logic,
which evaluates ~x and its neighbors sequentially. On the right,
it shows our parallelized version. Note that the optimizer
makes the same sequence of calls2 in both versions because
our parallelization does not impose any change to the opti-
mizer. After the optimizer calls f(~x+α ~u1), our run-time logic
compares ~x+α ~u1 against the parameter of the last call, i.e., ~x,
which is maintained by our run-time logic. Our logic finds that
the two differ only at one entry, which suggests that ~x+α ~u1 is
a neighbor of ~x. Meanwhile, our run-time logic automatically
extracts the α value by computing the difference. Afterwards,
predicts the remaining 7 neighbors, and spawns 8 processes
to evaluate the 8 neighbors in parallel. After the evaluation is
done, the results are associated with the points and stored in
a cache. Later on, when the optimizer calls f(~x+ α ~u2), . . . ,
f(~x+ α ~u8), the result can be immediately retrieved from the
cache using the point as the key.

We carefully designed the run-time logic to limit its over-
head incurred. For instance, it clears the cache when the
optimizer moves from ~x to ~x′ in Figure 1 because the results
of the neighbors of ~x are no longer needed. At any time, the
cache needs to store only the results of the n neighbors around
the point of interest. In a typical situation with n ≤ 10000,
the cache lookup is efficient.

2) No Change to the Optimizer: Our approach does not
impose any change to the optimizer, which leads to numerous
engineering advantages, including simplicity, modularity and
portability. Our approach first creates a function fwrap, which
wraps f with the add-on run-time logic, and then uses fwrap as
a drop-in replacement of f . In essence, we ask the optimizer
to treat fwrap as the new target function. In particular, our
solution offers a generic function fwrap that takes any function
f as its input and wraps it. Therefore, the users can enjoy
the speedup brought by our parallelization without writing
any extra code. More importantly, our parallelization solution

2The function call is different from the function execution, where the
former makes the request for the evaluation and the latter performs the actual
evaluation.

applies to multiple optimizers given that it is not specialized
for, or limited to, any single optimizer. Thus, there are no
portability issues.

3) Evaluation: We implemented our approach and included
it in the Qiskit Aqua open-source project for Quantum Com-
puting [1]. We also evaluated it on both standard benchmarks
and real-world scientific computing applications.

The evaluation results lead to the following conclusions:
1) The overhead incurred by our run-time logic is negligi-

ble (≤ 3%).
2) With our approach, the running time decreases gradually

when we increase the number of parallel worker pro-
cesses, which confirms the effectiveness of our solution.
In particular, with 8 parallel workers, we observed 4X
speedup at most, 1.5X speedup at least and 2.5X speedup
on average.

3) By inspecting the final result and logging the trace, we
found that our optimized version produced the same
result as the original version and followed the same
trace, which indicates that our approach does not affect
the accuracy of the final results or the convergence of
the optimizers.

4) We studied the applicability of our approach to the
SciPy [38] optimizer suite, which is widely used [41]
and is representative of existing optimizer suites [13],
[28], [31], [38]. We found that our approach applies to
four popular optimizers, including those with the best
performance among all. We believe that the applicability
to them is important since users simply use the optimiz-
ers with the best performance in most cases.

5) Although we conducted the evaluation on the SciPy
optimizer suite only, our approach is not specific to
SciPy and also applies to other optimizer suites. For
example, we have tested it on the DIRECT-L optimizer
in NLOpt [28] and observed similar speedup.

E. Contributions of This Work

Through this work, we make the following contributions:
1) We identify a general pattern that enables the par-

allelization of the internal computations of numerical
optimizers, leading to numeric-optimization speedup.

2) We propose a parallelization algorithm that consists of
the pattern detection, prediction, precomputation and
caching. It imposes no code changes to the optimizer,
thereby leading to software-engineering advantages such
as simplicity, modularity and portability.

3) We conduct an extensive evaluation on both standard
benchmarks and real-world scientific-computing appli-
cations. The results show that our design incurs negli-
gible overhead, effectively speeds up the execution, and
does not affect correctness.

4) The solution presented in this paper has been imple-
mented and deployed in the Qiskit Aqua open-source
project for Quantum Computing [1].

We present our parallelization algorithm in Section II, and
an extensive evaluation in Section III.

311

II. PARALLELIZATION ALGORITHM

In this section, we first formalize the pattern we observed,
then present our parallelization algorithm, and lastly demon-
strate the algorithm by applying it to a concrete example
during which we discuss more details.

As mentioned above, optimizers often approximate the gra-
dient ∇f(~x) through numerical differentiation, which requires
evaluating the neighbors of ~x in addition to ~x itself. We
observe that the neighbors satisfy a general pattern:

Pattern 1: If the dimension of ~x is n, then ~x has n
neighbors, each of the form ~x + α~ui, where i = 1, 2, . . . , n.
Each neighbor ~x+α~ui of ~x shares the same values with ~x at all
entries except for the ith one. Besides, ~x is at the same distance
α from all its neighbors, where α is computed internally by
the optimizer.

A. Concrete Example

Suppose ~x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] and α =
0.002. Then, the neighbors of ~x are: as follows:

~x1 = [0.102, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

~x2 = [0.1, 0.202, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

~x3 = [0.1, 0.2, 0.302, 0.4, 0.5, 0.6, 0.7, 0.8]

~x4 = [0.1, 0.2, 0.3, 0.402, 0.5, 0.6, 0.7, 0.8]

~x5 = [0.1, 0.2, 0.3, 0.4, 0.502, 0.6, 0.7, 0.8]

~x6 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.602, 0.7, 0.8]

~x7 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.702, 0.8]

~x8 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.802]

B. Algorithm Description

As mentioned in Section I, our parallelization technique
relies on the run-time logic. We need to first determine where
the run-time logic should be embedded. In favor of feasibility
and general applicability, the run-time logic should be applied
in a non-intrusive way with respect to the optimizer, i.e.,
it should not interfere with the original workflow of the
optimizer. For instance, since the optimizer makes the function
calls sequentially (as illustrated on the left of Figure 2), our
parallelization should also assume that the function calls are
made sequentially. Under this constraint, we find that the target
function is the ideal place where to plug the run-time logic
because the function is specified by the users and can be freely
modified.

Given the user-specified target function f , we create a
wrapper function fwrap that performs our run-time logic, calls
f , and sets fwrap as the new target function in place of
f . Accordingly, the optimizer will sequentially call fwrap.
Algorithm 1 details the design of fwrap. At the interface level,
fwrap takes the same input as f , i.e., the point ~xc to be
evaluated, and produces the same result. Note that variables
cache, ~xlast and Nworker are global.

First, we look up the cache (line 1); we return the evaluation
result associated with ~xc, if any (line 4), or else we follow the

ALGORITHM 1: The Wrapper Function fwrap

Input: the current point ~xc
1 vc = lookup(cache, ~xc)
2 if vc 6= null then
3 ~xlast = ~xc
4 return vc
5 else
6 if ~xlast 6= null then
7 ~x∆ = ~xc - ~xlast
8 if nonzeros(~x∆) == 1 then
9 α = |~x∆|

10 n = dimension(~xc)
11 foreach i = 1 . . . n do
12 ~xi = ~xlast.copy()
13 ~xi[i] += α
14 todo.append(~xi)
15 end
16 parallel run(f , todo, Nworker, cache)
17 ~xlast = ~xc
18 return lookup(cache, ~xc)
19 end
20 end
21 cache.clear()
22 ~xlast = ~xc
23 return f(~xc)
24 end

false branch (line 5). At line 6, we check whether the point
~xlast involved by the last call exists. Since ~xlast is updated
prior to the return of every call (lines 3, 17 and 22), ~xlast
exists unless the current point is the first point. Suppose ~xlast
exists for now. We further check if ~xc differs from ~xlast only
at a single entry (lines 7-8), i.e., whether ~xc and ~xlast satisfy
Pattern 1. If so, we extract α (line 9), prepare all the neighbors
(lines 11-15), and evaluate them in parallel (line 16). Note the
helper function parallel run evaluates f against the items
in the todo list in parallel and stores the results into cache.
Nworker is user-specified and controls the number of worker
processes spawned. Ideally, to achieve the maximal speedup,
it should be equal to the number of available cores. Lastly, in
case ~xlast does not exist (line 6) or the pattern is not satisfied
(line 8), we can do nothing but faithfully evaluate f(~xc) and
return the value (line 23).

Inside the parallel run function, we separate the items in
the todo list evenly into Nworker parts and assign each part
to a worker. If the size Nsize of the todo list is not a
multiple of Nworker, then some workers need to work on
dNsize/Nworkere items and some on bNsize/Nworkerc items.
These workers are joined at the end of parallel run, i.e., they
wait for each other.

C. Applying the Algorithm

Let us apply Algorithm 1 to the above concrete example to
discuss more details. The optimizer first calls fwrap on ~x. The

312

execution takes the false branches at lines 2 (due to the cache
miss) and 6 (since ~xlast has not yet been set). The execution
then evaluates f(~xc) and sets ~xlast (lines 22-23).

Next, the optimizer calls fwrap upon ~x1. The execu-
tion reaches line 7 and computes ~x∆ = ~x1 − ~x =
[0.002, 0, 0, 0, 0, 0, 0, 0]. ~x∆ has only one non-zero entry (line
8) and the value at such entry, which is equal to the length
|~x∆| of ~x∆, is extracted as α (line 9). The loop at line 11
prepares the 8 neighbors by first making a copy of ~x and
then increasing the ith entry by α = 0.002. For example, ~x8

becomes [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] after the copying
(line 12) and [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.802] after the
increase (line 13). The neighbors are put into the list todo.
The execution then spawns Nworker processes to evaluate f
against the 8 neighbors in parallel, and stores the results in
cache (line 16). The evaluation result of the current point, i.e.,
~x1, must be in the cache and is returned at line 18.

Then, the optimizer calls fwrap upon ~x2. The execution
immediately returns the result (line 4), precomputed and stored
into cache by the call on ~x1. Similarly, after the optimizer calls
fwrap on other neighbors, the execution immediately returns
the relevant results.

D. Cache

The cache is cleared at line 21, which happens only if the
conditions at lines 6 or 8 do not hold. If the condition at line 6
does not hold, ~xc is the first point evaluated, then the cache is
empty and cache.clear() is trivial. If the condition at line 8 does
not hold, ~xc represents the new center whose neighbors need to
be evaluated, e.g., ~x′ in Figure 1. In this case, the cache holds
the results of the neighbors of the old center ~x in Figure 1,
which are no longer needed and hence can be removed. At
any time, the cache is either empty or holds the results of n
neighbors. Given that n is relatively small (e.g., ≤ 10000),
the cache lookup is very efficient. In particular, the lookup is
implemented by sequentially scanning the points in the cache
and checking for equality. For equality checking, we use the
array_equal API provided by NumPy. In future work, we
will study how to speedup the cache lookup operations further
(e.g., with hashing).

E. Discussion on Correctness

Algorithm 1 does not change the sequence of points that the
optimizer evaluates. Instead, it only parallelizes the evaluation
of a subsequence of points to achieve the desired speedup.
Therefore, Algorithm 1 does not affect the accuracy of the
final result or the convergence of the optimizer.

III. EVALUATION

In this section, we present our experimental results.

A. Subject Optimizers

In our evaluation, we focus on the SciPy V1.1.0 opti-
mizers [38]. The algorithms underlying the optimizers were
invented independently before SciPy was created. They were
selected and included in SciPy, which suggests that their

effectiveness is well accepted by the community. Furthermore,
these optimizers are widely used by existing software, such
as the deep-learning [41] and quantum-application frame-
works [1]. Although we conducted the evaluation only on
the SciPy optimizer suite, our approach is not SciPy=specific.
For example, we have successfully tested it on the NLOpt
DIRECT-L optimizer [28]. In total, we studied the follow-
ing optimizers: CG [30], COBYLA [34], L-BFGS-B [10],
Nelder-Mead [27], Powell [33], SLSQP [25], TNC [20],
trust constr [29], trust ncg [29], dogleg [29], trust krylov [29]
and trust exact [29]. We refer the reader to the references for
the details on each of these optimizers.

B. Research Questions

We are interested in answering the following four research
questions:

1) Applicability: What optimizers benefit from our ap-
proach?

2) Performance Study: How much speedup does our ap-
proach introduce, and how much overhead does our run-
time logic incur?

3) Correctness: Does our algorithm affect the convergence
of the optimizers or the accuracy of their results?

4) Real-world Applications: Does our approach apply to
the real-world uses of these optimizers?

To answer the first three questions, we applied the op-
timizers to a set of functions well studied and commonly
used for benchmarking the optimizers [22]. The definition and
visualization of the functions can be found online [4] [21].
From this collection, we select the representative functions
such that:
• They can be generalized to the high dimension (because

our approach is most effective for high-dimension prob-
lems), and

• They have a single minimum value (because otherwise
the optimizers may easily get stuck at local optima, which
is an open research challenge).

In particular, we selected the following functions: Rosen-
brock [6] [21], Giunta [21], Trid [8], Sum of Different Pow-
ers [7], Power Sum [5] and Zakharov [9]. We refer to these
as the benchmark functions. In our experiments, each of such
functions takes 8 parameters, i.e., the dimension of ~x given as
input is 8.

To answer the fourth and last question, we conducted
the study on the real-world scientific-computing application
that computes the ground-state energy of a molecule via
minimization on a quantum computer using the Variational
Quantum Eigensolver (VQE) algorithm [32].

C. Settings

To simulate different execution times, we add a parameter-
ized loop to each benchmark function. The loop has a deter-
ministic computation logic, i.e., no randomness is introduced,
and it does not affect the function result. Specifically, the loop
repeatedly computes the inverse of a matrix and multiplies it

313

by the matrix itself. The loop count is a controllable param-
eter. To simulate the time-consuming function mentioned in
Section I, we set the loop count as a relatively large number
(1,000 by default). Accordingly, the execution of the loop takes
roughly 70 milliseconds.

We measure the performance of the optimizers following
the fixed-target strategy [3]. That is, we specify a target
accuracy of the result and measure the running time required
by each optimizer to reach the target. Assuming the minimum
function value is -2.5, we specify the target as -2.5+ε, where
ε stands for an acceptable error (0.001 by default). In the
sequential settings, we may alternatively use the number of
function evaluations, instead of the running time, to measure
the performance given that each function evaluation is slow
and the function evaluations dominate the running time.

All the experiments were run on a MacBook Pro 6.1
equipped with a 12-Core Intel Xeon E5 processor and 64GB
RAM. Every experiment was repeated 20 times. Here, we
report the average over the 20 runs.

D. Answering the Research Questions

In this section, we discuss how we answered the four
research questions formulated in Section III-B.

1) Applicability: According to Section II, our approach
applies as long as the optimizer uses the gradient to guide
the search. Specifically, the optimizer approximates the gra-
dient with the numerical differentiation by evaluating the
neighboring points. Following the algorithmic descriptions
of each optimizer, we determined that our approach applies
to four optimizers: CG [30], L-BFGS-B [10], SLSQP [25]
and TNC [20]. We also logged the points evaluated by the
optimizers and manually inspected the logs. The inspection
confirmed that the four optimizers follow Pattern 1.

Importantly, although only four optimizers benefit from our
improvement (Section III-D2), we observed they have the
best performance among all. We argue that it is crucial to
improve the optimizers with the best performance rather than
a random set of optimizers because the users commonly pick
the optimizers with the best performance regardless of their
internal logic.

Specifically, we applied the original optimizers (without our
improvement) to the benchmark functions and measured how
many function evaluations each optimizer needs to reach the
minimum. Each function evaluation is slow and the evaluations
dominate the overall running time. The results are shown
in Figure 3, where the results are grouped by the bench-
mark functions (X-axis); the Y-axis stands for the running
time. According to the results, trust constr, trust ncg, dogleg,
trust krylov and trust exact are clearly the slowest. For this
reason, we will not consider them hereafter. Note that we did
not show the result of the dogleg optimizer because it failed to
find the minimum values for Giunta, Sum of Different Powers
and Power Sum.

We also observe that SLSQP and L-BFGS-B consistently
have the best performance. Next to them, CG performs com-

parably to COBYLA. Lastly, TNC performs comparably to
POWELL and NELDER MEAD.

2) Performance Study: From now on, we consider only the
four optimizers that our approach applies to. In this section,
we are interested in the speedup that our parallelization brings,
and the overhead that our run-time logic incurs. We compare
the baseline version, i.e., the original benchmark function, with
our parallelized version, i.e., the wrapper function that exe-
cutes both the run-time logic and the benchmark function. We
evaluated the parallelized version with different concurrency
settings ranging from 1 to 8 processes. We refer to them as p1,
p2, . . . , p8, respectively. We may refer to the baseline version
as base.

The evaluation results for the benchmark functions are
shown in Figure 5, where the X-axis stands for the different
versions and the Y-axis shows the running time in seconds.
For clarity, we show in Figure 4 the normalized results, where
the Y-axis stands for the ratio of the running time between a
particular version and the baseline version, labelled on the X-
axis. We use Tp1 to refer to the running time of the p1 version
and use Rp1/base = Tp1/Tbase to refer to the ratio between
the p1 version and the baseline version.

To approximate the overhead incurred by our run-time
logic, we focus on the baseline version and the p1 version.
The p1 version shares the same workload and the same
degree of concurrency as the baseline version (i.e., both
with a single worker process). Meanwhile, the p1 version
additionally includes the run-time logic, e.g., the prediction
of the neighbors, the caching operations and the process
spawning/joining. Therefore, we compute the overhead as
Rp1/base − 1, i.e., (Tp1 − Tbase)/Tbase. We observe that the
overhead is ≤ 3% in all the cases except when L-BFGS-B is
applied to Zakharov (6% overhead) and when CG is applied
to Giunta (9% overhead). This observation shows that our run-
time logic incurs very little overhead.

To measure the speedup, we compare the running time
of the parallelized versions (i.e., from p2 to p8) against the
baseline version. From Figure 4, we observed an interesting
general trend shared by all the curves: Tp1 > Tp2 > Tp3 >
Tp4 ≈ Tp5 ≈ Tp6 ≈ Tp7 > Tp8. Without loss of generality,
let us take the application of SLSQP to Rosenbrock as an
example. If the baseline takes time t, p2 takes ∼65%t, p3
∼55%t, p4, p5, p6 and p7 ∼45%t, and p8 ∼37%t. Most
importantly, the parallelization takes less time with higher
degree of concurrency, which confirms the effectiveness of
our algorithm.

We also observe that p4, p5, p6 and p7 takes roughly the
same running time. This is explained as follows. As mentioned
in the experiment settings, each function takes 8 parameters,
which implies that the optimizer needs to evaluate 8 neighbors
at each iteration (Figure 1). Let us assume that the evaluation
of each neighbor takes roughly the same time, t. With four
parallel worker processes, each worker needs to evaluate 8/4=2
neighbors, which takes roughly 2t time. With five parallel
workers, at least one worker needs to evaluate d8/5e = 2
neighbors which requires 2t, and the other workers that

314

Fig. 3: Performance Comparison of All Optimizers in SciPy

complete sooner need to wait for it (line 16 in Algorithm 1).
Similarly, with 6 or 7 parallel workers, at least one worker
evaluates d8/6e = d8/7e = 2 neighbors, which takes 2t. By
generalizing this analysis to the versions from p1 to p8, we
find that the number of neighbors evaluated by the slowest
worker in each iteration is d8/1e > d8/2e > d8/3e > d8/4e =
d8/5e = d8/6e = d8/7e > d8/8e, consistent with the trend

observed above.
We also conducted a quantitative analysis of the results.

By computing the average over all the optimizers and all
benchmark functions, we found that our algorithm reduces
the running time t to 69.4%t with 2 processes, 58.8%t with 3
processes, 49.2%t with four processes, and 38.7%t with eight
processes.

315

(a) Rosenbrock (b) Giunta

(c) Trid (d) Sum of Different Powers

(e) Power Sum (f) Zakharov

Fig. 4: Performance Study

316

(a) Rosenbrock (b) Giunta

(c) Trid (d) Sum of Different Powers

(e) Power Sum (f) Zakharov

Fig. 5: Performance Study

317

Additionally, with 8 parallel processes, our algorithm re-
duces the running time to 23.9%t (when L-BFGS-B is applied
to Giunta) at most, and to 67.6%t (when TNC is applied to
Rosenbrock) at least, which corresponds to a 4X speedup and
1.5X speedup, respectively, where the speedup is defined as
Tbase/Tp8.

3) Correctness: We also manually inspected the results of
the parallelized versions from p1 to p8, and confirmed that
the results were the same as the ones in the non-parallelized
version. Empirically, this indicates that our approach does not
affect the convergence of the optimizers or the accuracy of the
final results.

We also logged the points evaluated during optimization
and found that the parallelized versions evaluated the same
sequence of points as the non-parallelized ones. This indicates
that our algorithm does not change the optimization logic, and
explains why the parallelised versions produce the same results
as the original ones.

4) Real-world Applications: In this section, we present
a real-world application of our approach in the scientific-
computing field. We worked with a group of computational
chemists to compute the ground-state energy Eg of a set
of molecules—an important open research question [24]. Eg

is closely related to the eigenvalue (and eigenvector) of the
Hamiltonian H of the molecule—a matrix that summarizes the
dynamics of the molecule. Applying a classical eigensolver to
compute the eigenvalue is computationally intractable when
the dynamics of the molecules are large and complex. Re-
searchers have proposed the VQE algorithm [24], [32], [43]
to address this challenge. We will briefly explain it.

VQE is based on the variational method, which in turn is
based on the variational principle [32], according to which
the eigenvector is the vector ~x that minimizes the function
f(~x) in the Rayleigh quotient form [32], [43]. Simply speak-
ing, function f(~x) conducts the computation related to the
Hamiltonian H and the input vector ~x. Such computation is
very expensive and involves numerous tensor-product opera-
tions [44]. Furthermore, the variational method creates another
function g(~θ) to generate the input vector ~x of f . Therefore,
the goal is to find the ~θ values that minimize the f(g(~θ))
or F (θ), where F is the composition of f and g. Under the
hood, to solve this problem, the variational method relies on
a classical optimizer, which simply treats F as a black-box
function.

We focused on the LiH molecule [42], for which the black-
box function F depends on 8 parameters. Our implementation
is based on the Qiskit Aqua open-source project [1], which
implements the variational method mentioned above.

The evaluation results are shown in Figure 6. In Figure 6 (a),
we show the running time (Y-axis) taken by each version
(X-axis), similar to Figure 5. In Figure 6 (b), we show the
normalized result, i.e., the ratio (Y-axis) between each version
(X-axis) and the baseline, similar to Figure 4. Here we omit
the p5, p6 and p7 versions because their results are very similar
to the p4 version, as explained in Section III-D2.

From the results, we draw conclusions consistent with
the studies on the benchmark functions above. First, based
on the Rp1/base ratio, we found that the p1 version takes
almost the same time as the baseline version. More precisely,
the overhead incurred by the extra run-time logic in the p1
version is just ≤ 2%—a negligible overhead. Second, while we
increase the number of parallel worker processes, the running
time decreases. The p2, p3, p4 and p8 versions take on average
69.8%, 61.4%, 50.1% and 42.1% of the running time of the
baseline version, respectively. In particular, the p4 and the p8
versions achieved a 2X and 2.4X speedup, respectively. This
confirms that our algorithm effectively speeds up the numerical
optimization. Third, we inspected the final results produced
by different versions and found them to be identical. This
confirms that our optimization does not affect the accuracy of
the results or the convergence of the optimizers.

IV. RELATED WORK

Numerical optimization [29] has been extensively used in
many areas, including, but not limited to. AI, finance, scien-
tific computing and operations research. It can be classified
based on different criteria. Specifically, it can be classified
as constrainted optimization or unconstrainted optimization
depending on whether the search space is constrained or
not. Our parallelization is applicable to both kinds. It can
also be classified into local and global optimization, where
local optimization has the advantage of high speed and global
optimization has the advantage of not getting stuck at local
optima. For demonstration purposes, our evaluation is based
on local optimizers. However, our approach applies to any
gradient-based local and global optimizer. For instance, we
have successfully tested our approach on the global optimizer
DIRECT-L [28].

Stochastic Gradient Descent (SGD) [2] is a numerical
optimization algorithm popular in deep learning. Theoretically,
L-BFGS-B and CG (both evaluated in this work) converge
faster than SGD because they use both the first-order and
second-order derivatives to guide the search, following the
quasi-newton method [10]. This is more advanced than the
gradient descent, which uses only the first-order derivatives.
Researchers also conducted a comparison in the context of
deep learning, and concluded that L-BFGS-B and CG outper-
form SGD practically in some cases [26]. In fact, L-BFGS-B
is also included in popular deep-learning frameworks, such as
Tensorflow [41] and PyTorch [35].

Additional work [12], [18] has been proposed to parallelize
optimizers. For example, Fei et al. [18] parallelize L-BFGS-
B using many GPU cores. Their work holds a different
assumption on the characteristic of each function evaluation.
In particular, it assumes that each function evaluation can
be conducted fast by a GPU core, which is different from
our assumption, according to which each function evaluation
takes a long time. More importantly, existing parallelization
work is specific to one particular optimizer (e.g., L-BFGS-
B) and requires non-trivial engineering efforts to modify
the code of the optimizer, thereby defying the extension to

318

(a) Running Time (b) Ratio

Fig. 6: Real-world Application

other optimizers. In contrast, our approach is independent of
the optimizer and hence is generally applicable to multiple
optimizers. Our work shares some conceptual similarity with
speculative execution [23], [36], which predicts the upcoming
workload, precomputes and caches the results. There are many
other improvements of the numerical optimization [45], which
mostly focus on revising the algorithms from a mathematical
perspective. Differently, our work tackles the optimization
problem from a compiler optimization perspective. Besides,
researchers [15], [16] have made interesting observations (e.g.,
triangle inequality) that help achieve significant speedup of
machine learning applications.

V. CONCLUSION

We proposed a parallelization algorithm based on a general
pattern to speed up numerical optimization. During numerical
optimization, our algorithm detects the computational pattern,
predicts the neighboring points, precomputes the results for
them, and caches the results so that future requests for eval-
uating the neighboring points can be immediately completed.
Besides, our design imposes no changes to the optimizer.
Instead, it modifies the callback target function, which leads to
several software-engineering advantages, including simplicity,
modularity and portability. The evaluation results on both
standard benchmarks and a real-world application shows that
our approach possesses the following unique characteristics:

1) It incurs negligible overhead,
2) It effectively speeds up optimization, and
3) It does not affect the accuracy of the results or the

convergence of the optimizers.
Our algorithm applies to gradient-based optimizers, which

turn out to have the best performance among all optimizers,
and is particularly useful when used to parallelize classical
numerical optimization in hybrid quantum/classical variational
algorithms, such as VQE and QAOA. Given that users often

pick the optimizers with the best performance, we believe
parallelizing such optimizers is highly useful.

VI. DISCLAIMER

This paper was prepared for information purposes by the
Future Lab for Applied Research and Engineering (FLARE)
Group of JPMorgan Chase & Co. and its affiliates, and
is not a product of the Research Department of JPMorgan
Chase & Co. JPMorgan Chase & Co. makes no explicit or
implied representation and warranty, and accepts no liability,
for the completeness, accuracy or reliability of information,
or the legal, compliance, tax or accounting effects of matters
contained herein. This document is not intended as investment
research or investment advice, or a recommendation, offer or
solicitation for the purchase or sale of any security, financial
instrument, financial product or service, or to be used in
any way for evaluating the merits of participating in any
transaction.

REFERENCES

[1] Qiskit Aqua, 2018. URL: https://github.com/Qiskit/qiskit-aqua.
[2] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), pages 265–283, Savannah, GA, 2016. USENIX Association.

[3] Vahid Beiranvand, Warren Hare, and Yves Lucet. Best practices for
comparing optimization algorithms. Optimization and Engineering,
18(4):815–848, Dec 2017.

[4] Derek Bingham. Optimization test problems, 2018. URL: https://www.
sfu.ca/∼ssurjano/optimization.html.

[5] Derek Bingham. Power sum function, 2018. URL: https://www.sfu.ca/
∼ssurjano/powersum.html.

[6] Derek Bingham. Rosenbrock function, 2018. URL: https://www.sfu.ca/
∼ssurjano/rosen.html.

[7] Derek Bingham. Sum of different powers function, 2018. URL: \\s:
//www.sfu.ca/∼ssurjano/sumpow.html.

319

[8] Derek Bingham. Trid function, 2018. URL: https://www.sfu.ca/
∼ssurjano/trid.html.

[9] Derek Bingham. Zakharov function, 2018. URL: https://www.sfu.ca/
∼ssurjano/zakharov.html.

[10] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited
memory algorithm for bound constrained optimization. SIAM J. Sci.
Comput., 16(5):1190–1208, September 1995.

[11] Pei Chen. Hessian matrix vs. gauss-newton hessian matrix. SIAM J.
Numer. Anal., 49(4):1417–1435, July 2011.

[12] Weizhu Chen, Zhenghao Wang, and Jingren Zhou. Large-scale l-bfgs
using mapreduce. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’14, pages
1332–1340, Cambridge, MA, USA, 2014. MIT Press.

[13] A. Costa and G. Nannicini. Rbfopt, 2018. URL: https://github.com/
coin-or/rbfopt.

[14] Joachim Dahl and Lieven Vandenberghe. CVXOPT: A python pack-
age for convex optimization, 2008. URL: http://www.abel.ee.ucla.edu/
cvxopt.

[15] Yufei Ding, Lin Ning, Hui Guan, and Xipeng Shen. Generalizations
of the theory and deployment of triangular inequality for compiler-
based strength reduction. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2017, pages 33–48, New York, NY, USA, 2017. ACM.

[16] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd
Mytkowicz. Yinyang k-means: A drop-in replacement of the classic k-
means with consistent speedup. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 579–
587, Lille, France, 07–09 Jul 2015. PMLR.

[17] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm. arXiv:1411.4028, 11 2014.

[18] Yun Fei, Guodong Rong, Bin Wang, and Wenping Wang. Technical
section: Parallel l-bfgs-b algorithm on gpu. Comput. Graph., 40:1–9,
May 2014.

[19] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl.
qpOASES: A parametric active-set algorithm for quadratic program-
ming. Mathematical Programming Computation, 6(4):327–363, 2014.

[20] Stephen G. Nash. Newton-type minimization via the lanczos method.
21:770–788, 08 1984.

[21] Irene. Benchmark optimization problems, 2018. URL: https://irene.
readthedocs.io/en/latest/benchmarks.html.

[22] Momin Jamil and Xin-She Yang. A literature survey of benchmark
functions for global optimization problems. CoRR, abs/1308.4008, 2013.

[23] Mark C. Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer,
and Daniel Sanchez. Data-centric execution of speculative parallel
programs. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-49, pages 5:1–5:13, Piscataway, NJ, USA,
2016. IEEE Press.

[24] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita,
Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient
variational quantum eigensolver for small molecules and quantum mag-
nets. Nature, 549(7671):242–246, 2017.

[25] D. Kraft. A Software Package for Sequential Quadratic Programming.
Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt
Köln: Forschungsbericht. Wiss. Berichtswesen d. DFVLR, 1988.

[26] Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby
Prochnow, and Andrew Y. Ng. On optimization methods for deep

[32] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L.

learning. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, pages 265–
272, USA, 2011. Omnipress.

[27] J.A. Nelder and RA Mead. A simplex method for function minimization
comput. 7, 01 1965.

[28] NLopt. Nlopt, 2018. URL: https://nlopt.readthedocs.io/en/latest/NLopt
Algorithms/.

[29] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
New York, NY, USA, second edition, 2006.

[30] Yvan Notay. Flexible conjugate gradients. SIAM J. Sci. Comput,
22:1444–1460, 2000.

[31] Ruben E. Perez, Peter W. Jansen, and Joaquim R. R. A. Martins. pyOpt:
A Python-based object-oriented framework for nonlinear constrained
optimization. Structures and Multidisciplinary Optimization, 45(1):101–
118, 2012.
O’Brien. A variational eigenvalue solver on a photonic quantum
processor, Jul 2014.

[33] M. J. D. Powell. An efficient method for finding the minimum of
a function of several variables without calculating derivatives. The
Computer Journal, 7(2):155–162, 1964.

[34] M. J. D. Powell. A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation. In Susana
Gomez and Jean-Pierre Hennart, editors, Advances in Optimization and
Numerical Analysis, Proceedings of the 6th Workshop on Optimization
and Numerical Analysis, Oaxaca, Mexico, volume 275, pages 51–67,
Dordrecht, 1994. Kluwer Academic Publishers.

[35] PyTorch. Pytorch l-bfgs, 2018. URL: https://pytorch.org/docs/stable/
modules/torch/optim/lbfgs.html.

[36] Arun Raman, Greta Yorsh, Martin Vechev, and Eran Yahav. Sprint:
Speculative prefetching of remote data. In Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pages 259–274, New York,
NY, USA, 2011. ACM.

[37] Anders W. Sandvik. Numerical solutions of the schrodinger equation,
2018. URL: http://physics.bu.edu/∼py502/lectures4/schrod.pdf.

[38] Scipy. Scipy optimizers, 2018. URL: https://docs.scipy.org/doc/scipy/
reference/optimize.html.

[39] Spark. Spark configuration, 2018. URL: https://spark.apache.org/docs/
latest/configuration.html.

[40] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function
approximation. In Proceedings of the 12th International Conference
on Neural Information Processing Systems, NIPS’99, pages 1057–1063,
Cambridge, MA, USA, 1999. MIT Press.

[41] Tensorflow. Tensorflow scipy optimizer interface, 2018.
URL: https://www.tensorflow.org/api docs/python/tf/contrib/opt/
ScipyOptimizerInterface.

[42] Wikipedia. Lih, 2018. URL: https://en.wikipedia.org/wiki/Lithium
hydride.

[43] Wikipedia. Rayleigh quotient, 2018. URL: https://en.wikipedia.org/wiki/
Rayleigh quotient.

[44] Wikipedia. Tensor product, 2018. URL: https://en.wikipedia.org/wiki/
Kronecker\ product.

[45] R. Zhao, W. B. Haskell, and V. Y. F. Tan. Stochastic l-bfgs: Improved
convergence rates and practical acceleration strategies. IEEE Transac-
tions on Signal Processing, 66(5):1155–1169, March 2018.

320

